Equation-Based Models of Wound Healing and Collective Cell Migration

Author(s):  
Julia Arciero ◽  
David Swigon
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshifumi Asakura ◽  
Yohei Kondo ◽  
Kazuhiro Aoki ◽  
Honda Naoki

AbstractCollective cell migration is a fundamental process in embryonic development and tissue homeostasis. This is a macroscopic population-level phenomenon that emerges across hierarchy from microscopic cell-cell interactions; however, the underlying mechanism remains unclear. Here, we addressed this issue by focusing on epithelial collective cell migration, driven by the mechanical force regulated by chemical signals of traveling ERK activation waves, observed in wound healing. We propose a hierarchical mathematical framework for understanding how cells are orchestrated through mechanochemical cell-cell interaction. In this framework, we mathematically transformed a particle-based model at the cellular level into a continuum model at the tissue level. The continuum model described relationships between cell migration and mechanochemical variables, namely, ERK activity gradients, cell density, and velocity field, which could be compared with live-cell imaging data. Through numerical simulations, the continuum model recapitulated the ERK wave-induced collective cell migration in wound healing. We also numerically confirmed a consistency between these two models. Thus, our hierarchical approach offers a new theoretical platform to reveal a causality between macroscopic tissue-level and microscopic cellular-level phenomena. Furthermore, our model is also capable of deriving a theoretical insight on both of mechanical and chemical signals, in the causality of tissue and cellular dynamics.


2021 ◽  
Author(s):  
Ivana Pajic-Lijakovic ◽  
Milan Milivojevic

Although collective cell migration (CCM) is a highly coordinated migratory mode, perturbations in the form of jamming state transitions and vice versa often occur even in 2D. These perturbations are involved in various biological processes, such as embryogenesis, wound healing and cancer invasion. CCM induces accumulation of cell residual stress which has a feedback impact to cell packing density. Density-mediated change of cell mobility influences the state of viscoelasticity of multicellular systems and on that base the jamming state transition. Although a good comprehension of how cells collectively migrate by following molecular rules has been generated, the impact of cellular rearrangements on cell viscoelasticity remains less understood. Thus, considering the density driven evolution of viscoelasticity caused by reduction of cell mobility could result in a powerful tool in order to address the contribution of cell jamming state transition in CCM and help to understand this important but still controversial topic. In addition, five viscoelastic states gained within three regimes: (1) convective regime, (2) conductive regime, and (3) damped-conductive regime was discussed based on the modeling consideration with special emphasis of jamming and unjamming states.


Soft Matter ◽  
2021 ◽  
Author(s):  
Carolina Trenado ◽  
Luis L. Bonilla ◽  
Alejandro Martínez-Calvo

Collective cell migration plays a crucial role in many developmental processes that underlie morphogenesis, wound healing, or cancer progression. In such coordinated behaviours, cells are organised in coherent structures and...


2021 ◽  
pp. 55-74
Author(s):  
Chaithra Mayya ◽  
Sumit Kharbhanda ◽  
Ashadul Haque ◽  
Dhiraj Bhatia

2013 ◽  
Vol 1 (1) ◽  
pp. 21 ◽  
Author(s):  
Jianxin Jiang ◽  
Li Li ◽  
Yong He ◽  
Min Zhao

Author(s):  
Jose L. Rapanan ◽  
Agnes S. Pascual ◽  
Chandana K. Uppalapati ◽  
Kimbal E. Cooper ◽  
Kathryn J. Leyva ◽  
...  

2020 ◽  
Vol 92 (24) ◽  
pp. 16180-16187
Author(s):  
Xiao-Hong Wang ◽  
Fan Yang ◽  
Jian-Bin Pan ◽  
Bin Kang ◽  
Jing-Juan Xu ◽  
...  

2017 ◽  
Vol 137 (2) ◽  
pp. e11-e16 ◽  
Author(s):  
Ayman Grada ◽  
Marta Otero-Vinas ◽  
Francisco Prieto-Castrillo ◽  
Zaidal Obagi ◽  
Vincent Falanga

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jennifer Hartman ◽  
Miguel Barriera Diaz ◽  
Ronald C. Wek ◽  
Dan F. Spandau

Background and Hypothesis: Cutaneous wound healing involves: hemostatic, inflammatory, proliferative, and tissue remodeling phases. Re-epithelialization can be modeled in vitro using human keratinocytes and artificial wounds. Previous work showed undifferentiated keratinocytes closing wounds in vitro using individual cell migration (ICM), whilst differentiated keratinocytes utilize collective cell migration (KCCM). Therefore, we hypothesize that ICM in vitro is equivalent to keratinocyte migration during squamous cell carcinoma metastasis in vivo and KCCM is a model for wound re-epithelialization. Furthermore, we hypothesize that the integrated stress response (ISR) is important in ICM and KCCM. The ISR is activated by environmental stresses that protein kinases (GCN2 and PERK) can detect and phosphorylate translation factor, eIF2a. Our goal is to define how the ISR, specifically GCN2 and PERK, influence keratinocyte migration. Methods: We will evaluate in vitro wound healing and kinetic variation in protein expression and cytoskeleton remodeling. We will utilize four keratinocyte cell lines, control human keratinocyte NTERTs, and CRISPR-derived gene knockouts of GCN2, PERK, and ISR effector gene ATF4. Quantitative analysis of wound healing is accomplished using an IncuCyte ZOOM instrument. Protein expression is measured via immunoblots following high density wounding. Cytoskeletal analyses was done by immunofluorescence. Results: Preliminary results show PERK-KO and GCN2-KO cells have reduced expression of F-actin. Immunoblots showed actin-binding protein, phospho-cofilin, at lower levels in PERK-KO and GCN2-KO cells than in NTERT cells. Wound healing assays showed differentiated keratinocytes healing faster than undifferentiated in all cells, except GCN2-KO. GCN2-KO cells healed significantly slower than other differentiated cells and undifferentiated GCN2-KO cells. Wound healing assays showed undifferentiated PERK-KO cells healing slower than other undifferentiated cell lines. Conclusion/Potential Impact: The results indicate PERK and GCN2 could be key components in ICM and CCM respectfully. GCN2 and PERK could thus be potential therapeutic targets to provide cost-effective therapeutics to enhance/inhibit keratinocyte migration.


Sign in / Sign up

Export Citation Format

Share Document