Combinations of Ranks and Cranks of Partitions Moduli 6, 9 and 12 and Their Comparison with the Partition Function

Author(s):  
Zafer Selcuk Aygin ◽  
Song Heng Chan
Author(s):  
A.V. BOCHKAREV ◽  
◽  
S.L. BELOPUKHOV ◽  
A.V. ZHEVNEROV ◽  
S.V. DEMIN ◽  
...  

1983 ◽  
Vol 48 (10) ◽  
pp. 2888-2892 ◽  
Author(s):  
Vilém Kodýtek

A special free energy function is defined for a solution in the osmotic equilibrium with pure solvent. The partition function of the solution is derived at the McMillan-Mayer level and it is related to this special function in the same manner as the common partition function of the system to its Helmholtz free energy.


1988 ◽  
Vol 53 (5) ◽  
pp. 889-902
Author(s):  
Josef Šebek

It is shown that the formation of the so-called rotator phase of alkanes (one of the high temperature crystalline phases) might be connected with a partial increase of the conformational flexibility of chains. The conformations with higher number of kinks per chain, which have been neglected till now, are shown to contribute effectively to the conformational partition function. Small probability of these states given by the Boltzmann exponent is compensated by a large number of ways in which they can be distributed along the chain. The deduced features of the rotator phase seem to be in agreement with the experimentally observed properties.


1987 ◽  
Vol 02 (08) ◽  
pp. 601-608 ◽  
Author(s):  
T. FUKAI ◽  
M. V. ATRE

The Grassmannian σ model with a topological term is studied on a lattice. The θ dependence of the partition function and the Wilson loop are evaluated in the strong coupling limit. The latter is shown to be independent of the area at θ = π, as in the CPN−1 model.


2014 ◽  
Vol 10 (08) ◽  
pp. 2011-2036 ◽  
Author(s):  
Renrong Mao

Bringmann, Mahlburg and Rhoades proved asymptotic formulas for all the even moments of the ranks and cranks of partitions with polynomial error terms. In this paper, motivated by their work, we apply the same method and obtain asymptotics for the two rank moments of overpartitions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


Sign in / Sign up

Export Citation Format

Share Document