Mechanical Properties of Additive Manufactured Part Using Fused Deposition Modeling: Influence of Process Parameters

Author(s):  
Ramu Murugan ◽  
T. Mohanraj ◽  
Lovin K. John
Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1239
Author(s):  
Ali Chalgham ◽  
Andrea Ehrmann ◽  
Inge Wickenkamp

Fused deposition modeling (FDM) is one of the most often-used technologies in additive manufacturing. Several materials are used with this technology, such as poly(lactic acid) (PLA), which is most commonly applied. The mechanical properties of 3D-printed parts depend on the process parameters. This is why, in this study, three-point bending tests were carried out to characterize the influence of build orientation, layer thickness, printing temperature and printing speed on the mechanical properties of PLA samples. Not only the process parameters may affect the mechanical properties, but heat after-treatment also has an influence on them. For this reason, additional samples were printed with optimal process parameters and characterized after pure heat treatment as well as after deformation at a temperature above the glass transition temperature, cooling with applied deformation, and subsequent recovery under heat treatment. These findings are planned to be used in a future study on finger orthoses that could either be printed according to shape or in a flat shape and afterwards heated and bent around the finger.


manufacturing (AM) enables the production of lattice structure architecture due to its capability to produce complex geometries. Lattice structure is a design that contains a space-filling unit cell that can be tessellated among any axis. It is an analytic design to reduce mass and weight of the object. However, many challenges arise in the AM- printed lattice such as warping, shrinkage, elephant foot, first layer problem, surface finishing and mechanical properties especially when fabricated using fused deposition modeling (FDM) technique. Hence, this study aims to optimize the influence of process parameters of collinear lattice FDM printed part using Taguchi. Meanwhile, S/N ratio was used to find the optimal process parameters in improving the printing quality. Other than that, the analysis of variance (ANOVA) was used to provide the significance ranking of various factors analyzed. From the results, it was found that the layer thickness is the most significant factors that affect the maximum force (N) of collinear lattice structures. In addition, this study was conducted to assist the fabrication of printed part for the structural applications.


Author(s):  
Brad Hripko ◽  
Luke Hoover ◽  
Priyadarsini Damodara ◽  
Timothy Reissman ◽  
Robert Lowe

Abstract Soft, ultra-stretchable thermoplastic elastomers have recently became available for use with desktop, fused deposition modeling printers. However, the effects of additive manufacturing process parameters on final mechanical properties are presently not well-known for this class of materials, making predictive modeling and product design difficult. Here we perform a design of experiments investigation of an elastomeric material that the manufacturer claims to have up to 580% strain at fracture. Within the investigation, two factors, extrusion temperature and layer height, are selected as independent variables and mechanical properties are extracted as dependent variables based on quasi-static tension tests following ASTM D412. Primary statistical results, based on an Analysis of Variance, indicate that hotter extrusion temperatures exhibit higher Young’s moduli (at small strain), lower ultimate tensile strength, and higher fracture strain. Further, the layer thickness is not a factor unless evaluating performance at small strain, in which case it is significant and thicker layers will yield higher Young’s moduli. Several popular hyperelastic constitutive models are calibrated to our tensile data, and a preliminary finite-element simulation of a soft prosthetic finger is performed to demonstrate the potential role of predictive simulations in 3D-printed product design.


2021 ◽  
Vol 13 (2) ◽  
pp. 34-38
Author(s):  
Sabit Hasçelik ◽  
◽  
Ömer T. Öztürk ◽  
Sezer Özerinç ◽  
◽  
...  

Fused deposition modeling (FDM) is a widely used additive manufacturing technique for producing polymeric parts. While most commonly used FDM filaments are PLA and ABS, nylon is a widely used thermoplastic polymer in industry. This study investigated the mechanical properties of FDM-produced specimens made of nylon and quantified the effect of process parameters such as raster orientation and nozzle temperature on the mechanical properties. As the nozzle temperature increases, specimens become stronger with higher elongations at the break. This is mainly due to the improved fusion between the layers, provided by an expansion of the heat-affected zone. On the other hand, specimens with diagonal raster orientation exhibit higher elongations than those with perpendicular and parallel raster. The findings also emphasize the synergistic effects between nozzle temperature and printing orientation, showing that optimization should consider the two parameters together. Overall, FDM can produce strong nylon parts with adequate ductility suitable for load-bearing applications. However, achieving such results requires a detailed optimization of process parameters.


Sign in / Sign up

Export Citation Format

Share Document