nozzle temperature
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 62)

H-INDEX

7
(FIVE YEARS 4)

2022 ◽  
pp. 095400832110673
Author(s):  
Pei Wang ◽  
Aigang Pan ◽  
Liu Xia ◽  
Yitao Cao ◽  
Hongjie Zhang ◽  
...  

As a rapidly developing additive manufacturing technology, fused deposition modeling (FDM) has become widespread in many industry fields. It can fabricate complicated geometries using filament of thermoplastic materials such as PP, polylactic acid, acrylonitrile butadiene styrene, etc. However, poor mechanical properties of raw materials limit their application. Poly-ether-ether-ketone is a type of special engineering plastic with high performance, which could be further reinforced by adding carbon fibers (CFs). During FDM process, the mechanical properties of printed parts are largely subject to careful selection of process parameters. To improve the mechanical properties of PEEK and CF/PEEK 3D-printed parts, the effects of various process parameters including building orientation, raster angle, nozzle temperature, platform temperature, ambient temperature, printing speed, layer thickness, infill density, and number of printed parts on mechanical properties were investigated. The tensile fracture interfaces of printed parts were observed by scanning electron microscope (SEM) to explain the influence mechanism of process parameters. In the single factor experiments, flat and on-edge specimens show the best tensile and flexural strength, respectively; the specimens with raster angle ±45° and 0° show the best tensile and flexural strength, respectively. When the nozzle temperature at 500°C, platform temperature at 200°C, ambient temperature at 150°C, printing speed is 20 mm/s, layer thickness is 0.2 mm, and infill density is 100%, the printed parts exhibit the best mechanical properties.


2021 ◽  
Vol 16 (3) ◽  
pp. 319
Author(s):  
Hasdiansah Hasdiansah ◽  
Sugiyarto Sugiyarto

<p>Teknologi FDM (<em>Fused Deposition Modelling</em>) merupakan salah satu teknologi yang digunakan untuk membuat objek 3D. FDM sering disebut sebagai teknologi yang sudah mampu mengubah dunia manufaktur dewasa ini. Namun teknologi FDM memiliki kelemahan karena teknologi ini menggunakan proses <em>building per layer </em>membuat permukaan yang dihasilkan terlihat memiliki garis yang menunjukan batas antar <em>layer </em>sehingga mempengaruhi kekasaran pada permukaan produk cetak.  Penelitian ini menggunakan filamen <em>Super Tough</em> PLA (ST.PLA). Tujuan penelitian ini adalah untuk mengetahui pengaruh parameter proses terhadap kekasaran permukaan objek cetak dan untuk mengetahui seting parameter proses yang menghasilkan kekasaran permukaan terbaik dari parameter proses yang digunakan. Penelitian ini menggunakan metode Taguchi dengan matriks ortogonal L<sub>25</sub>(5<sup>6</sup>).  Parameter proses yang akan dipilih dan dianalisis dalam penelitian ini adalah<em> layer thickness, printing speed, nozzle temperature, orientation, flowrate</em>, <em>cooling speed </em>dan respon yang diamati adalah kekasaran permukaan objek cetak. Untuk mengatasi permasalahan <em>noise</em> (gangguan) maka dicetak masing-masing tiga kali replikasi  Selanjutnya parameter proses tersebut akan dianalisis menggunakan Analisis Varian (ANOVA). Berdasarkan data  hasil pengukuran kekasaran permukaaan objek cetak,  maka diperoleh parameter proses yang memberikan pengaruh paling besar terhadap kekasaran permukaan objek cetak dengan menggunakan filamen ST-PLA adalah <em>layer thickness</em> dengan nilai F hitung sebesar 129,96, <em>flowrate</em> dengan nilai F hitung sebesar 6 dan <em>orientation</em> dengan nilai F hitung sebesar 3,03. Seting parameter proses yang menghasilkan nilai kekasaran permukaan terbaik objek cetak adalah 0,10 mm yaitu pada eksperimen nomor lima (Exp. No. 5) dengan rata-rata  12,61 µm, dengan pengaturan <em>layer thickness</em>, 45 mm/s pada pengaturan <em>printing speed</em>, 210˚C pada <em>nozzle temperature</em>, 0˚ pada <em>orientation</em>, 110% pada pengaturan <em>flowrate</em> dan 40% pada pengaturan <em>cooling speed</em>. Seluruh parameter proses tersebut disetting pada <em>slicing software</em> ideamaker 3.6.1. dalam menghasilkan G-Code objek cetak.</p>


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Federico Bertolucci ◽  
Nicolò Berdozzi ◽  
Lara Rebaioli ◽  
Trunal Patil ◽  
Rocco Vertechy ◽  
...  

Drop on demand (DoD) inkjet printing is a high precision, non-contact, and maskless additive manufacturing technique employed in producing high-precision micrometer-scaled geometries allowing free design manufacturing for flexible devices and printed electronics. A lot of studies exist regarding the ink droplet delivery from the nozzle to the substrate and the jet fluid dynamics, but the literature lacks systematic approaches dealing with the relationship between process parameters and geometrical outcome. This study investigates the influence of the main printing parameters (namely, the spacing between subsequent drops deposited on the substrate, the printing speed, and the nozzle temperature) on the accuracy of a representative geometry consisting of two interdigitated comb-shape electrodes. The study objective was achieved thanks to a proper experimental campaign developed according to Design of Experiments (DoE) methodology. The printing process performance was evaluated by suitable geometrical quantities extracted from the acquired images of the printed samples using a MATLAB algorithm. A drop spacing of 140 µm and 170 µm on the two main directions of the printing plane, with a nozzle temperature of 35 °C, resulted as the most appropriate parameter combination for printing the target geometry. No significant influence of the printing speed on the process outcomes was found, thus choosing the highest speed value within the investigated range can increase productivity.


2021 ◽  
Vol 2 (12) ◽  
pp. 2107-2117
Author(s):  
Riskullah Dirga Trisaplin ◽  
Zaldy Sirwansyah Suzen ◽  
Subkhan Subkhan

Hadirnya Revolusi Industri 4.0 menyebabkan teknologi di bidang industri manufaktur berkembang sangat pesat, salah satunya mesin Rapid Prototyping dengan teknologi FDM yang merupakan mesin cetak 3 dimensi dengan prinsip pencetakan secara additive manufacturing informasi mengenai parameter proses yang dapat menghasilkan suatu produk 3D dengan kekuatan tarik secara ideal di Indonesia sangat minim, mengingat informasi tersebut sangat diperlukan dunia industri, sehingga penelitian ini bertujuan untuk mengetahui nilai kekuatan tarik serta parameter proses yang ideal dengan menggunakan filamen PLA PRO Metode yang digunakan pada penelitian ini adalah metode eksperimen faktorial, penelitian ini menggunakan mesin 3D printer Anet Et4, nozzle berukuran 0,4 mm, variasi parameter yang digunakan yaitu 3 level nozzle temperature, 15 infill pattern berdasarkan software Prusaslicer 2.3 dan orientasi sudut pencetakan vertikal 90ᵒ. Sehingga menghasilkan 45 kombinasi eksperimen. Hasil dari pengujian tarik tertinggi sebesar 44,2 yang terdapat pada eksperimen nomor 10 infill pattern 3D Honeycomb, Nozzle Temperature 210ᵒC, sudut pencetakan vertikal 90ᵒ. Sedangkan nilai kekuatan tarik terendah terdapat pada eksperimen nomor 43 dengan parameter infill Pattern Archimedean Chord, Nozzle Temperature 220ᵒC, sudut pencetakan vertikal 90ᵒ, dengan nilai kekuatan tarik sebesar 15,7 MPa. Sehingga dapat disimpulkan parameter proses tersebut mempengaruhi hasil dari pencetakan produk 3D printing.


2021 ◽  
Vol 2 (12) ◽  
pp. 2153-2164
Author(s):  
Rikky Ardiansyah ◽  
Zaldy Sirwansyah Suzen ◽  
Erwansyah Erwansyah

Saat ini teknologi di dunia industri manufaktur telah mengalami kemajuan yang sangat pesat salah satunya adalah 3D printing. 3D printing merupakan salah satu teknologi yang mengubah data digital menjadi objek 3D dengan menggunakan proses Additive manufacturing pada saat memproduksi suatu produk. Penelitian ini dilakukan untuk mengetahui pengaruh infill pattern dan nozzle temperature terhadap kekuatan tarik produk 3D printing dengan orientasi sudut pencetakan vertikal sebesar 0° mengggunakan filamen polylactic acid (PLA). Pada penelitian material polylactic acid (PLA) akan dicetak sesuai dengan standar uji tarik ASTM D638-14 Type 4. Variasi parameter proses yang digunakan pada infill pattern berupa lines, cubic, cubic division, quarter cubic, grid, octet, concentric, zig zag, tri hexagon, triangles, gyroid, cross dan cross 3D dan nilai dari nozzle temperature yang digunakan sebesar 205°C, 215°C, dan 225°C. Pada penelitian menunjukan bahwa bahwa infill pattern dan nozzle temperature memiliki pengaruh terhadap kekuatan tarik produk 3D printing dengan orientasi sudut pencetakan vertikal sebesar 0° menggunakan filamen polylactic acid (PLA) Nilai kekuatan tarik tertinggi yang terdapat pada penelitian ini sebesar 42,5 MPa yang menggunakan infill pattern dengan tipe zig zag dan nozzle temperature sebesar 205°C. Sedangkan nilai kekuatan tarik terendah sebesar 30 MPa yang menggunakan infill pattern dengan tipe cross


2021 ◽  
Vol 13 (2) ◽  
pp. 34-38
Author(s):  
Sabit Hasçelik ◽  
◽  
Ömer T. Öztürk ◽  
Sezer Özerinç ◽  
◽  
...  

Fused deposition modeling (FDM) is a widely used additive manufacturing technique for producing polymeric parts. While most commonly used FDM filaments are PLA and ABS, nylon is a widely used thermoplastic polymer in industry. This study investigated the mechanical properties of FDM-produced specimens made of nylon and quantified the effect of process parameters such as raster orientation and nozzle temperature on the mechanical properties. As the nozzle temperature increases, specimens become stronger with higher elongations at the break. This is mainly due to the improved fusion between the layers, provided by an expansion of the heat-affected zone. On the other hand, specimens with diagonal raster orientation exhibit higher elongations than those with perpendicular and parallel raster. The findings also emphasize the synergistic effects between nozzle temperature and printing orientation, showing that optimization should consider the two parameters together. Overall, FDM can produce strong nylon parts with adequate ductility suitable for load-bearing applications. However, achieving such results requires a detailed optimization of process parameters.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012020
Author(s):  
L J W William ◽  
S C Koay ◽  
M Y Chan ◽  
M M Pang ◽  
T K Ong ◽  
...  

Abstract Fuse deposition modelling (FDM) has become a revolutionary manufacturing technology as it offers numerous advantages, including freedom of fabrication, mass customisation, fast prototyping, and cost-effectiveness. Thermoplastic material is commonly used as feedstock for FDM process. The current state of material development, the recycled plastic material also can be used as printing material for FDM machine. Expanded polystyrene (EPS) has been extensively used as packaging materials for many industries but rarely be recycled, as its relatively large volume with minimal weight is unconducive for transportation. This research aimed to utilize EPS waste and turn it into FDM feedstock. This research also aims to enhance the properties of recycled polystyrene (rPS) made from EPS waste by blending it with polypropylene (PP). Different ratios of rPS/PP blends were prepared and extruded into FDM filament using filament extruder. The formulated filaments were printed into specimen using FDM machine. This research found the filament made from rPS/PP blends can be printed into specimen with good printing quality if the nozzle temperature controlled at 240° C with 120 % extrusion rate. With this printing parameter, the specimen printed with rPS/PP blend filament exhibit the greatest adhesion between the deposited layers without any visible voids or gaps. Besides, the printed specimen with rPS/PP blends possess lower tensile strength, but higher tensile modulus as compared to the printed specimen with neat rPS. The addition of more PP decreased both tensile strength and modulus of rPS/PP blends. On the other hand, the rPS/PP blends have higher thermal stability as the PP content increased. Overall, the rPS/PP blends filament shows a great potential as a feedstock material for FDM fabrication.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4213
Author(s):  
Tomáš Tichý ◽  
Ondřej Šefl ◽  
Petr Veselý ◽  
Karel Dušek ◽  
David Bušek

This work presented an FEM (finite element method) mathematical model that describes the temperature distribution in different parts of a 3D printer based on additive manufacturing process using filament extrusion during its operation. Variation in properties also originate from inconsistent choices of process parameters employed by individual manufacturers. Therefore, a mathematical model that calculates temperature changes in the filament (and the resulting print) during an FFF (fused filament fabrication) process was deemed useful, as it can estimate otherwise immeasurable properties (such as the internal temperature of the filament during the printing). Two variants of the model (both static and dynamic) were presented in this work. They can provide the user with the material’s thermal history during the print. Such knowledge may be used in further analyses of the resulting prints. Thanks to the dynamic model, the cooling of the material on the printing bed can be traced for various printing speeds. Both variants simulate the printing of a PLA (Polylactic acid) filament with the nozzle temperature of 220 °C, bed temperature of 60 °C, and printing speed of 5, 10, and 15 m/s, respectively.


Author(s):  
Jayakumar N ◽  
◽  
Senthilkumar G ◽  
Pradeep A D ◽  
◽  
...  

Additive manufacturing significantly reduces the lead time of the product development cycle in the way of design trials and thus reduces delivery time to the market. The essence has been understood by many sectors including, education, manufacturing industries, automotive, medical, aerospace, consumer electronics, bio-medical and even fashion enthusiasts. It is used to prepare this PLA for the used plastics and landfills. By this way, it can reduce the plastics waste from the earth. Compare with ABS plastics, PLA plastics are cheaper. This disruptive technology going to the change the way of manufacturing goods and sets a new narrow path to the future industries. During usage of filament material, it’s got failure due to not enough quality printing because of not proper process parameters. Also, the printed part does not have good surface quality. So, the PLA material requires improved mechanical properties. The objective of this study is to create 3D printed parts with good quality with the optimized process parameters.The selected process parameters are infill density (%), Nozzle temperature (º) and print orientation. Taguchi orthogonal array (L9) design method has been chosen for generating design of experiments. The samples are produced according to its ASTM standards. The specimens were tested for identifying the mechanical properties like tensile strength, compression strength and impact strength. From the results obtained from the tests, taking the mean values and conclude the better infill density, orientation and the nozzle temperature the PLA.


Sign in / Sign up

Export Citation Format

Share Document