Sentiment Analysis in Google Play Store: Algerian Reviews Case

Author(s):  
Asma Chader ◽  
Leila Hamdad ◽  
Abdesselam Belkhiri
Author(s):  
Swathi Venkatakrishnan ◽  
Abhishek Kaushik ◽  
Jitendra Kumar Verma

2021 ◽  
Vol 13 (3) ◽  
pp. 128-133
Author(s):  
Attala Rafid Abelard ◽  
Yuliant Sibaroni

Among many film streaming platforms that have sprung up, Netflix is ​​the platform that has the most subscribers compared to the other platforms. However, not all reviews provided by the Netflix users are good reviews. These reviews will later be analyzed to determine what aspects are reviewed by the users based on reviews written on the Google Play Store, using the Latent Dirichlet Allocation (LDA) method. Then, the classification process using the Support Vector Machine (SVM) method will be carried out to determine whether each of these reviews is included in the positive or negative class (Sentiment Analysis). There are 2 scenarios that were carried out in this study. The first scenario resulted that the best number of LDA topics to be used is 40, and the second scenario resulted that the use of filtering process in the preprocessing stage reduces the score of the f1-score. Thus, this study resulted in the best performance score on LDA and SVM testing with 40 topics, and without running the filtering process with the score of 78.15%.


Author(s):  
Lutfi Budi Ilmawan ◽  
Edi Winarko

AbstrakGoogle dalam application store-nya, Google Play, saat ini telah menyediakan sekitar 1.200.000 aplikasi mobile. Dengan sejumlah aplikasi tersebut membuat pengguna memiliki banyak pilihan. Selain itu, pengembang aplikasi mengalami kesulitan dalam mencari tahu bagaimana meningkatkan kinerja aplikasinya. Dengan adanya permasalahan tersebut, maka dibutuhkan sebuah aplikasi analisis sentimen yang dapat mengolah sejumlah komentar untuk memperoleh informasi.Sistem yang dibangun memiliki tujuan untuk menentukan polaritas sentimen dari ulasan tekstual aplikasi pada Google Play yang dilakukan dari perangkat mobile. Perangkat mobile memiliki portabilitas yang tinggi dan sebagian dari perangkat tersebut memiliki resource yang terbatas. Hal tersebut diatasi dengan menggunakan arsitektur sistem berbasis client server, di mana server melakukan tugas-tugas yang berat sementara client-nya adalah perangkat mobile yang hanya mengerjakan tugas yang ringan. Dengan solusi tersebut maka Analisis sentimen dapat diaplikasikan pada mobile environment.Adapun metode klasifikasi yang digunakan adalah Naïve Bayes untuk aplikasi yang dikembangkan dan Support Vector Machine Linier sebagai pembanding. Nilai akurasi dari Naïve Bayes classifier dari aplikasi yang dibangun sebesar 83,87% lebih rendah jika dibandingkan dengan nilai akurasi dari SVM Linier classifier sebesar 89,49%. Adapun penggunaan semantic handling untuk mengatasi sinonim kata dapat mengurangi akurasi classifier. Kata kunci— analisis sentimen, google play, klasifikasi, naïve bayes, support vector machine AbstractGoogle's Google Play now providing approximately 1.200.000 mobile applications. With these number of applications, it makes the users have many options. In addition, application developers have difficulties in figuring out how to improve their application performance. Because of these problems, it is necessary to make a sentiment analysis applications that can process review comments to get valuable information.The purpose of this system is determining the polarity of sentiments from applications’s textual reviews on Google Play that can be performed on mobile devices. The mobile device has high portability and the majority of these devices have limited resource. That problem can be solved by using a client server based system architecture, where the server performs training and classification tasks while clients is a mobile device that perform some of sentiment analysis task. With this solution, the sentiment analysis can be applied to the mobile environment.The classification method that used are Naive Bayes for developed application and Linear Support Vector Machine that is used for comparing. Naïve Bayes classifier’s accuracy is 83.87%. The result is lower than the accuracy value of Linear SVM classifier that reach 89.49%. The use of semantic handling can reduce the accuracy of the classifier. Keywords—sentiment analysis, google play, classification, naïve bayes, support vector machine


2021 ◽  
Vol 15 (23) ◽  
pp. 178-185
Author(s):  
Abeer Aljumah ◽  
Amjad Altuwijri ◽  
Thekra Alsuhaibani ◽  
Afef Selmi ◽  
Nada Alruhaily

Considering that application’s security is an important aspect, especially nowadays with the increase in technology and the number of fraudsters. It should be noted that determining the security of an application is a difficult task, especially since most fraudsters have become skilled and professional at manipulating people and stealing their sensitive data. Therefore, we pay attention to spot insecure apps by analyzing user feedback on Google Play platform using sentiment analysis. As it is known, user reviews reflect their experiments and experiences in addition to their feelings and satisfaction with the application. But unfortunately, not all of these reviews are real, fake reviews do not reflect the sincerity of feelings, so we have been keen in our work to filter the reviews and deliver accurate and correct results. This tool is useful for both users wanting to install an android app and for developers interested in app’s optimization.


2019 ◽  
Vol 1196 ◽  
pp. 012032 ◽  
Author(s):  
Sitaresmi Wahyu Handani ◽  
Dhanar Intan Surya Saputra ◽  
Hasirun ◽  
Rizky Mega Arino ◽  
Gita Fiza Asyrofi Ramadhan

2021 ◽  
Vol 6 (2) ◽  
pp. 78-89
Author(s):  
Asep Hendra ◽  
Fitriyani Fitriyani

Healthcare service has the role to help and serve people to access medical services, i.e. providing medicines, medical consultation, or health control. Healthcare service has been transforming to a digital platform. Halodoc is one of the digital platforms that people can use for free or paid, user can also give reviews of Halodoc’s performance and services on Google Play Store to give feedback that Halodoc can use to evaluate and improve the app. The Google Play Store review is increasing every day. Therefore an analysis for the review with sentiment analysis for Halodoc’s review is needed, first phase of sentiment analysis for the review is preprocessing which has tokenization, transform to lower cases, filter stopword, dan filter token (by length) processes. The data is divided into two positive and negative classes with cross-validation and a k-fold validation value of 10, using Naïve Bayes Classifier algorithm with 81,68% accuracy and AUC 0.756, categorized as fair classification.


Author(s):  
Franklin Tchakounté ◽  
Athanase Esdras Yera Pagore ◽  
Marcellin Atemkeng ◽  
Jean Claude Kamgang

Comments are exploited by product vendors to measure satisfaction of consumers. With the advent of Natural Language Processing (NLP), comments on Google Play can be processed to extract knowledge on applications such as their reputation. Proposals in that direction are either informal or interested merely on functionality. Unlike, this work aims to determine reputation of Android applications in terms of confidentiality, integrity, availability and authentication (CIAA). This work proposes a model of assessing app reputation relying on sentiment analysis and text analysis of comments. While assuming that comments are reliable, we collect Google Play applications subject to comments which include security keywords. An in-depth analysis of keywords based on Naive Bayes classification is made to provide polarity of any comment. Based on comment polarity, reputation is evaluated for the whole application. Experiments made on real applications including dozens to billions of comments, reveal that developers lack to make efforts to guarantee CIAA services. A fine-grained analysis shows that not security reputed applications can be reputed in specific CIAA services. Results also show that applications with negative security polarities display in general positive functional polarities. This result suggests that security checking should include careful comment analysis to improve security of applications.


Sign in / Sign up

Export Citation Format

Share Document