Multi-layer Cross-domain Non-negative Matrix Factorization for Cross-scene Dimension Reduction on Hyperspectral Images

Author(s):  
Hong Chen ◽  
Kewei Gong ◽  
Ling Lei ◽  
Minchao Ye ◽  
Yuntao Qian
Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2045 ◽  
Author(s):  
Haris Khan ◽  
Sofiane Mihoubi ◽  
Benjamin Mathon ◽  
Jean-Baptiste Thomas ◽  
Jon Hardeberg

We present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials to study spatial and spectral textures. In this paper we discuss the calibration of the data and the method for addressing the distortions during image acquisition. We provide a spectral analysis based on non-negative matrix factorization to quantify the spectral complexity of the samples and extend local binary pattern operators to the hyperspectral texture analysis. The results demonstrate that although the spectral complexity of each of the textures is generally low, increasing the number of bands permits better texture classification, with the opponent band local binary pattern feature giving the best performance.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Sylvain Ravel ◽  
Caroline Fossati ◽  
Salah Bourennane

Generally, the content of the hyperspectral image pixel is a mixture of the reflectance spectra of the different components in the imaged scene. In this paper, we consider a linear mixing model where the pixels are linear combinations of those reflectance spectra, called endmembers, and linear coefficients corresponding to their abundances. An important issue in hyperspectral imagery consists in unmixing those pixels to retrieve the endmembers and their corresponding abundances. We consider the unmixing issue in the presence of small targets, that is, their endmembers are only contained in few pixels of the image. We introduce a thresholding method relying on Non-negative Matrix Factorization to detect pixels containing rare endmembers. We propose two resampling methods based on bootstrap for spectral unmixing of hyperspectral images to retrieve both the dominant and rare endmembers. Our experimental results on both simulated and real world data demonstrate the efficiency of the proposed method to estimate correctly all the endmembers present in hyperspectral images, in particular the rare endmembers.


Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Songze Lei ◽  
Boxing Zhang ◽  
Yanhong Wang ◽  
Baihua Dong ◽  
Xiaoping Li ◽  
...  

UAVs (unmanned aerial vehicles) have been widely used in many fields, where they need to be detected and controlled. Small-sample UAV recognition requires an effective detecting and recognition method. When identifying a UAV target using the backward propagation (BP) neural network, fully connected neurons of BP neural network and the high-dimensional input features will generate too many weights for training, induce complex network structure, and poor recognition performance. In this paper, a novel recognition method based on non-negative matrix factorization (NMF) with sparseness constraint feature dimension reduction and BP neural network is proposed for the above difficulties. The Edgeboxes are used for candidate regions and Log-Gabor features are extracted in candidate target regions. In order to avoid the complexity of the matrix operation with the high-dimensional Log-Gabor features, preprocessing for feature reduction by downsampling is adopted, which makes the NMF fast and the feature discriminative. The classifier is trained by neural network with the feature of dimension reduction. The experimental results show that the method is better than the traditional methods of dimension reduction, such as PCA (principal component analysis), FLD (Fisher linear discrimination), LPP (locality preserving projection), and KLPP (kernel locality preserving projection), and can identify the UAV target quickly and accurately.


Sign in / Sign up

Export Citation Format

Share Document