Forest Fires and Sustainability in the Mediterranean Ecosystems

Author(s):  
Hüseyin Barış Tecimen ◽  
Ali Kavgacı ◽  
Orhan Sevgi
2011 ◽  
Vol 8 (5) ◽  
pp. 1067-1080 ◽  
Author(s):  
E. Ternon ◽  
C. Guieu ◽  
C. Ridame ◽  
S. L'Helguen ◽  
P. Catala

Abstract. The Mediterranean Sea is a semi-enclosed basin characterized by a strong thermal stratification during summer during which the atmosphere is the main source of new nutrients to the nutrient-depleted surface layer. From aerosol sampling and microcosm experiments performed during the TransMed BOUM cruise (June–July 2008) we showed that: (i) the Mediterranean atmosphere composition (Al, Fe, P) was homogeneous over ~28° of longitude and was a mixture with a constant proportion of anthropogenic contribution and a variable but modest contribution of crustal aerosols. This quite stable composition over a one month period and a long transect (~2500 km) allowed to define the Mediterranean atmospheric "background" that characterizes the summer season in the absence of major Saharan event and forest fires, (ii) primary production significantly increased at all tested stations after aerosols addition collected on-board and after Saharan dust analog addition, indicating that both additions relieved on-going (co)-limitations. Although both additions significantly increased the N2 fixation rates at the western station, diazotrophic activity remained very low (~0.2 nmol N L−1 d−1), (iii) due to the presence of anthropogenic particles, the probable higher solubility of nutrients associated with mixed aerosols (crustal + anthropogenic contribution), conferred a higher fertilizing potential to on-board collected aerosol as compared to Saharan dust analog. Finally, those experiments showed that atmospheric inputs from a mixed atmospheric event ("summer rain" type) or from a high-intensity Saharan event would induce comparable response by the biota in the stratified Mediterranean SML, during summer.


2021 ◽  
pp. 1-12
Author(s):  
Zalmen Henkin

Abstract Encroachment of woody plants into grasslands and subsequent brush management are among the most prominent changes occurring in arid and semiarid ecosystems over the past century. The reduced number of farms, the abandonment of marginal land and the decline of traditional farming practices have led to encroachment of the woody and shrubby components into grasslands. This phenomenon, specifically in the Mediterranean region, which is followed by a reduction in herbage production, biodiversity and increased fire risk, is generally considered an undesirable process. Sarcopoterium spinosum has had great success in the eastern Mediterranean as a colonizer and dominant bush species on a wide variety of sites and climatic conditions. In the Mediterranean dehesa, the high magnitude and intensity of shrub encroachment effects on pastures and on tree production were shown to be dependent on temporal variation. Accordingly, there are attempts to transform shrublands into grassland-woodland matrices by using different techniques. The main management interventions that are commonly used include grazing, woodcutting, shrub control with herbicides or by mechanical means, amelioration of plant mineral deficits in the soil, and fire. However, the effects of these various treatments on the shrubs under diverse environmental conditions were found to be largely context-specific. As such, the most efficient option for suppressing encroachment of shrubs is combining different interventions. Appropriate management of grazing, periodic control of the shrub component, and occasional soil nutrient amelioration can lead to the development of attractive open woodland with a productive herbaceous understory that provides a wider range of ecological services.


2012 ◽  
Vol 50 (6) ◽  
pp. 1012-1026 ◽  
Author(s):  
Beatriz Duguy ◽  
José Antonio Alloza ◽  
M. Jaime Baeza ◽  
Juan De la Riva ◽  
Maite Echeverría ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1302
Author(s):  
Jordi Bartolomé ◽  
Jordi Miró ◽  
Xavier Panadès ◽  
Maria José Broncano ◽  
Josefina Plaixats ◽  
...  

During the second half of the 20th century, European countries experienced an increase in their forest area due to the global change. Consequently, there has been an increase in large forest fires, mainly in the Mediterranean basin, and this has forced the development of several types of prevention programs. One of them is the control of the understory by livestock. In this sense, browsing with a combination of donkeys and goats could be a good option, as both animals usually feed on forest species. However, little is known about their preferences for the key species of the Mediterranean forest. Using a cafeteria test, the preferences and consumption of both animals have been determined for five typical species of the Mediterranean forest, such as Quercus ilex, Pinus halepensis, Phillyrea latifolia, Rubus ulmifolius, and Brachypodium retusum. Results showed that donkeys and goats could act complementarily in the reduction of the fuel biomass of forests. Donkeys appear to act more on fine fuel, such as B. retusum, and goats on the more pyrophyte species, in this case P. halepensis. In addition, given that donkeys are at severe risk of extinction in Europe, this role of providing ecosystem services could contribute to their conservation. Despite this study only showing that goats and donkeys would consume all five presented plant species and that there are some differences in consumption during a short-term test, it constitutes a useful first step for conservation and fire prevention in the Mediterranean forests.


2006 ◽  
Vol 234 ◽  
pp. S203 ◽  
Author(s):  
J.A. Alloza ◽  
M.J. Baeza ◽  
J. De la Riva ◽  
B. Duguy ◽  
M.T. Echeverría ◽  
...  

2007 ◽  
Vol 8 (2) ◽  
pp. 129-145 ◽  
Author(s):  
Sergio Cinnirella ◽  
Nicola Pirrone ◽  
Alessia Allegrini ◽  
Daniela Guglietta

2021 ◽  
Author(s):  
Johannes Vogel ◽  
Eva Paton ◽  
Valentin Aich

Abstract. Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate extremes. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations, as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ER5 Land) and soil moisture (obtained from ESA CCI and ERA5 Land) lead to extreme reductions of ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: They are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.


2021 ◽  
Author(s):  
Francisco J. Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Sergio Soler ◽  
Francisco J. Gordillo-Vázquez ◽  
Nicolau Pineda ◽  
...  

Abstract. Lightning is the major cause of natural ignition of wildfires worldwide and produces the largest wildfires in some regions. Lightning strokes produce about 5 % of forest fires in the Mediterranean basin and are one of the most important precursors of the largest forest fires during the summer. Lightning-ignited wildfires produce significant emissions of aerosols, black carbon and trace gases, such as CO, SO2, CH4 and O3, affecting air quality. Characterization of the meteorological and cloud conditions of lightning-ignited wildfires in the Mediterranean basin can serve to improve fire forecasting models and to upgrade the implementation of fire emissions in atmospheric models. This study investigates the meteorological and cloud conditions of Lightning-Ignited Wildfires (LIW) and Long-Continuing-Current (LCC) lightning flashes in the Iberian Peninsula and Greece. LCC lightning and lightning in dry thunderstorms with low precipitation rate have been proposed to be the main precursors of the largest wildfires. We use lightning data provided by the World Wide Lightning Location Network (WWLLN), the Earth Network Total Lightning Network (ENTLN) and the Lightning Imaging Sensor (LIS) onboard the International Space Station (ISS) together with four databases of wildfires produced in Spain, Portugal, Southern France and Greece, respectively, in order to produce a climatology of LIW and LCC lightning over the Mediterranean basin. In addition, we use meteorological data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-reanalysis data set and by the Spanish State Meteorological Agency (AEMET) together with the Cloud Top Height (CTH) product derived from Meteosat Second Generation (MSG) satellites measurements to investigate the meteorological conditions of LIW and LCC lightning. According to our results, LIW and a significant amount of LCC lightning flashes tend to occur in dry thunderstorms with weak updrafts. Our results suggest that lightning-ignited wildfires tend to occur in high-based clouds with a vertical content of moisture lower than the climatological value, as well as with a higher temperature and a lower precipitation rate. Meteorological conditions of LIW from the Iberian Peninsula and Greece are in agreement, although some differences possibly caused by highly variable topography in Greece and a more humid environment are observed. These results show the possibility of using the typical meteorological and cloud conditions of LCC lightning flashes as proxy to parameterize the ignition of wildfires in atmospheric or forecasting models.


2016 ◽  
Vol XV (2) ◽  
pp. 126-132
Author(s):  
Milan Milenković ◽  
Vladan Ducić ◽  
Violeta Babić

Sign in / Sign up

Export Citation Format

Share Document