mediterranean oscillation
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Sabrina Taïbi ◽  
Ayoub Zeroual ◽  
Mohamed Meddi

Abstract This study investigates the effect of autocorrelation on temporal trends and step change on monthly, seasonal and annual temperatures of six meteorological stations of the North of Algeria from 1950 to 2016. Afterwards, links between the general atmospheric circulation, via six climate indices, and temperature are examined. Trends of temperature are analysed using six different versions of the Mann Kendall approach while the step change of the time series is computed using the original Pettitt test and the modified-Pettitt. Statistical tests have shown an increase in annual temperatures from 0.8 to 0.9°C since the 1980’s on the coastal regions and 90’s on the highlands. This warming most often exceeds 1°C on a seasonal scale, particularly in summer, while no significant trend is observed in winter. On a monthly scale, the increase in temperatures is marked between April and October. The analysis of relationships between six climate indices and average temperatures has shown that inter-annual temperature variability is most often associated with the East Atlantic oscillation for the entire study area. Winter temperatures are influenced by the Mediterranean oscillation as well as the North Atlantic oscillation. The East Atlantic oscillation is the dominant mode of circulation in spring and summer, while in autumn temperatures are strongly linked to West Mediterranean Oscillation. However, no significant correlations have been observed between temperatures and the Arctic Oscillation and El Nino southern oscillation.



2021 ◽  
Author(s):  
Baruch Ziv ◽  
Ron Drori ◽  
Hadas Saaroni ◽  
Adi Etkin ◽  
Efrat Sheffer

<p>Previous observation analyses have shown a declining rainfall trend over Israel, mostly statistically insignificant. These findings support the projections of the climatic models for the 21<sup>th</sup> century. The current study, for the period 1975-2020, undermines these findings, and the alarming future projections, and elaborates changes in the distribution of the rain along the rainy season.</p><p>The annual rainfall has a negligible trend, of +0.002%/decade, the number of rainy days has declined by -1.9%/decade and the average daily rainfall has increased by +2.1%/decade, all statistically insignificant. In the mid-winter both rainfall and daily rain intensity increased, while these variables have declined in the autumn and spring. The implied contraction of the rainy season is estimated by 2 measures. The 'effective length', which is determined by the time between accumulation of 10% and 90% of the annual rainfall, lasting 112 days on the average. This has been shortened by seven days during the study period. The other is the Seasonality Index (SI), reflecting the temporal concentration of the rainy season around its center. The trend found indicates that the regional climate is shifting from being between 'Markedly seasonal with a long dry season' and 'Most rain in ≤3 months', further toward the latter.</p><p>The trend in Cyprus Low occurrence and in the Mediterranean Oscillation Index were found to explain the rainfall trends only partially. We suggest that the cause for the increase in the mid-winter rain intensity is the increase in sea-surface temperature, found over the east Mediterranean, and for the decline in the transition seasons, to the poleward expansion of the subtropical highs. The contraction of the rainy season on the one hand, and the increased daily rain intensity in the mid-winter on the other, have ecological and hydrological impacts in this vulnerable region. </p>



2021 ◽  
Author(s):  
Eduardo Utrabo-Carazo ◽  
Cesar Azorin-Molina ◽  
Encarna Serrano ◽  
Enric Aguilar ◽  
Manola Brunet

<p>In a context of climate change, near-surface wind speed (SWS) has received less attention than other variables such as air temperature or precipitation, despite its undeniable environmental and socio-economic impacts. Studies suggest a generalized decrease of SWS in continental surfaces located in the middle latitudes from 1979 to 2010, the so-called stilling phenomenon, and an increase in it thereafter, which has been termed reversal or recovery phenomenon. Recent studies indicate that multidecade oscillations produced by the internal variability of the climate system are responsible for both phenomena. The aim of this work is to advance in the evaluation of the multidecadal variability and causes of the stilling and reversal in the observed SWS, covering the complete 2010s decade and focusing on the Iberian Peninsula region (IP). More specifically, the particular objectives of this study are: (i) to determine for the first time the occurrence of the reversal phenomenon in the IP over the last decade(s), identifying its onset year and its magnitude; (ii) to deepen into the relation between atmospheric teleconnection indices and observed trends in SWS; and (iii) to link atmospheric circulation changes to observed SWS variability. For that purpose, homogenized series of mean wind speed and gusts will be used, as well as data from the ERA5 reanalysis (European Centre for Medium-Range Weather Forecasting). Three SWS parameters will be analysed: monthly mean SWS anomaly; monthly mean daily peak wind gust (DPWG) anomaly; and number of days in which the value of DPWG exceeds the 90th percentile of the series considered. Trends of these parameters will be calculated, as well as the correlation between them and the modes of variability that govern in the region: North Atlantic Oscillation (NAO), Mediterranean Oscillation (MO) and Western Mediterranean Oscillation. Finally, trends of these modes of variability and of other parameters dependent on atmospheric circulation (e.g., geostrophic wind) will be calculated to try to clarify the drivers of the observed changes in the SWS.</p>



2021 ◽  
Vol 71 (1) ◽  
pp. 29-42
Author(s):  
Dragan Milosevic ◽  
Rastislav Stojsavljevic ◽  
Szilárd Szabó ◽  
Ugljesa Stankov ◽  
Stevan Savic ◽  
...  

Temporal and spatial variability of annual and seasonal precipitation from 71 stations located in Western Balkan (WB) countries (Serbia, Bosnia and Herzegovina, and Montenegro) and their correlations with nine atmospheric circulation patterns was examined for the period 1950-2016. Annual precipitation increased significantly throughout the WB (from 2% to 8% per decade) on 20% of stations located mainly in the mountainous western Serbia and eastern Bosnia and Herzegovina. Winter was characterized by non?significant precipitation changes in most of the studied area, with only a few stations characterized by significant precipitation increase (up to 12% per decade) in the mountainous area of WB, and a few stations characterized by significant decrease (up to -6% per decade) in the Pannonian plain. Significant precipitation increase was noticed on 15% of the stations in spring, while it was noticed on 17% of the stations in autumn. Summer precipitation decreased significantly (up to -5% per decade) on a limited area of northern Serbia (6% of the stations), while the majority of stations showed non?significant increase. The strongest influences on annual precipitation in WB region are of the Arctic Oscillation (AO) and Mediterranean Oscillation (MO), leading to the precipitation decrease during their positive phases. Winter precipitation is significantly negatively correlated with AO, East Atlantic/Western Russia oscillation (EA/WR), and North Atlantic Oscillation (NAO) and has a significant positive correlation with Western Mediterranean Oscillation (WeMO) on the majority of stations. MO has the strongest influence on summer precipitation in WB region leading to precipitation decrease, while AO has the dominant influence on precipitation in the region during autumn.



Author(s):  
J. Martín-Vide ◽  
M.C. Moreno-García ◽  
J.A. López-Bustins

The weather types of 68 dates with torrential rainfall (≥200 mm/day) recorded at any weather station in the provinces of Alicante or Murcia during the period between 1941 and 2017 were determined using the Martín-Vide’s 1984 manual synoptic classification. Other relevant synoptic characteristics, as well as the surface pressure, and the value of the Western Mediterranean Oscillation index (WeMOi) on which those dates fell were also considered. The results show the high percentage of the Advection from the East with DANA (isolated high-altitude depression) or ‘gota fría’ type, which is present in more than 50% of the events, followed by the Trough type at 500 hPa and the Dynamic or Cold-core Low type, in the torrential rainfalls of South-eastern Spain. Except for the latter type, the average air pressure is close to or higher than normal. The WeMOi was negative for all events, which is consistent with the nature of this teleconnection pattern.



2020 ◽  
Vol 81 ◽  
pp. 187-205
Author(s):  
D Burić ◽  
G Stanojević

Cloudiness is an important climate parameter, and it is closely related to insolation, temperature, and precipitation. Total cloud cover (TCC) data along with the number of cloudless (CL) and overcast (OC) days from 18 stations in Montenegro during the period 1961-2017 were used to determine the seasonal trends and possible causes of cloudiness variability. The Mann-Kendall test and Sen’s slope were used for trend detection. We found statistically significant (p < 0.05 and p < 0.10) decreasing (increasing) trends in TCC (the number of CL days) in winter, spring and summer. The exception was in autumn, when an increase (decrease) in the TCC (CL days) was shown, but in most cases, these changes were insignificant. The number of OC days declined in coastal and central regions, while a positive trend was found in the northern region for all seasons. The increase in the number of CL days during the summer and winter was more pronounced compared to the decreasing trend in the number of OC days. Pearson’s correlation (r) was used to access the relationship between cloudiness and principal modes of atmospheric variability such as North Atlantic Oscillation (NAO), Summer North Atlantic Oscillation (SNAO), Arctic Oscillation (AO), East Atlantic Oscillation (EA), East Atlantic-West Russian Oscillation (EAWR), Scandinavian Pattern (SCAND), Polar-Eurasian Oscillation (POLEUR), North Sea-Caspian Pattern (NCP), and South Oscillation (SOI) as well as regional patterns of climate variability—the Mediterranean Oscillation (MOI) and Western Mediterranean Oscillation (WeMO). A significant consistency (r > 0.60, p < 0.05) was found between time series of certain atmospheric circulation patterns and cloud parameters (NAO, AO, EAWR, SCAND, NCP, and MOI-1), especially in the colder half of the year.



2020 ◽  
Vol 20 (9) ◽  
pp. 2483-2501
Author(s):  
Joan Albert Lopez-Bustins ◽  
Laia Arbiol-Roca ◽  
Javier Martin-Vide ◽  
Antoni Barrera-Escoda ◽  
Marc Prohom

Abstract. In previous studies the Western Mediterranean Oscillation index (WeMOi) at daily resolution has proven to constitute an effective tool for analysing the occurrence of episodes of torrential precipitation over eastern Spain. The western Mediterranean region is a very sensitive area, since climate change can enhance these weather extremes. In the present study we created a catalogue of the extreme torrential episodes (≥200 mm in 24 h) that took place in Catalonia (NE Iberia) during the 1951–2016 study period (66 years). We computed daily WeMOi values and constructed WeMOi calendars. Our principal result reveals the occurrence of 50 episodes (0.8 cases per year), mainly concentrated in the autumn. We confirmed a threshold of WeMOi ≤ −2 to define an extreme negative WeMO phase at daily resolution. Most of the 50 episodes (60 %) in the study area occurred on days presenting an extreme negative WeMOi value. Specifically, the most negative WeMOi values are detected in autumn, from 11 to 20 October, coinciding with the highest frequency of extreme torrential events. On comparing the subperiods, we observed a statistically significant decrease in WeMOi values in all months, particularly in late October and in November and December. No changes in the frequency of these extreme torrential episodes were observed between both subperiods. In contrast, a displacement of the extreme torrential episodes is detected from early to late autumn; this can be related to a statistically significant warming of sea temperature.



2020 ◽  
Vol 10 (17) ◽  
pp. 5790
Author(s):  
Francisco Criado-Aldeanueva ◽  
Javier Soto-Navarro

The Mediterranean Sea, strategically situated across a dynamic frontier line that separates two regions with different climates (Europe and North Africa), has been the focus of attention of many studies dealing with its thermohaline circulation, deep water formation processes or heat and freshwater budgets. Large-scale atmospheric forcing has been found to play an important role in these topics and attention has been renewed in climatic indices that can be used as a proxy for atmospheric variability. Among them, the North Atlantic oscillation, the East Atlantic or the East Atlantic–West Russia patterns have been widely addressed but much less attention has been devoted to a Mediterranean mode, the Mediterranean oscillation. This overview summarizes the recent advances that have been achieved in the understanding of these climatic indices and their influence on the functioning of the Mediterranean from a physical point of view. The important role of the Mediterranean oscillation is emphasized and the most relevant aspects of the other indices are revisited and discussed.



Climate ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 62
Author(s):  
Arab Djebbar ◽  
Hugues Goosse ◽  
François Klein

Drought is a recurring phenomenon in North Africa, and extended dry periods can have a serious impact on economic and social structures, as well as the natural environment. Consequently, understanding the mechanisms that underlie precipitation variability in the region is a key driver of sustainable economic growth in activities such as agriculture, manufacturing, energy, and transport. North Africa’s climate differs significantly between coastal and inland areas. The region has a Mediterranean climate along the coast, characterized by mild, wet winters and warm, dry summers with reasonable rainfall of around 400 to 600 mm per year. The link between winter precipitation variability in this region and atmospheric patterns is assessed here using several gridded datasets of observations and reanalysis as well as model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP) covering the last millennium. Results show that the link between the zonal wind index at 850 hPa (U850) and winter precipitation is stronger and more robust over time than the link with some well-known modes of variability, such as the North Atlantic Oscillation (NAO), Mediterranean Oscillation (MO), and Western Mediterranean Oscillation (WeMO). U850 better explains the interannual changes in winter precipitation variability in North Africa for the past decades as well as the last millennium. Both winter precipitation and U850 simulated time series present significant decreasing trends, associated with drier conditions, starting in the 19th century. This is in agreement with the reconstructed and simulated Palmer Drought Severity Index (PDSI), which shows a decreasing trend toward drying conditions in North Africa.



Sign in / Sign up

Export Citation Format

Share Document