ecosystem vulnerability
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 18 (22) ◽  
pp. 5903-5927
Author(s):  
Johannes Vogel ◽  
Eva Paton ◽  
Valentin Aich

Abstract. Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate anomalies. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ERA5-Land) and soil moisture (obtained from ESA CCI and ERA5-Land) lead to extreme reductions in ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from the Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: they are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil-moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.


2021 ◽  
Vol 13 (21) ◽  
pp. 11849
Author(s):  
Haiyan Liu ◽  
Kangning Xiong ◽  
Yanghua Yu ◽  
Tingling Li ◽  
Yao Qing ◽  
...  

With a changing climate and socio-economic development, ecological problems are increasingly serious, research on ecosystem vulnerability and ecological resilience has become a hot topic of study for various institutions. Forests, the “lungs of the earth”, have also been damaged to varying degrees. In recent years, scholars have conducted numerous studies on the vulnerability and resilience of forest ecosystems, but there is a lack of a systematic elaboration of them. The results of a statistical analysis of 217 related documents show: (1) the number of studies published rises wave upon wave in time series, which indicates that this area of study is still at the stage of rising; (2) the research content is concentrated in four dimensions—ecosystem vulnerability assessment, ecosystem vulnerability model prediction, ecological resilience, and management strategies—among which the ecosystem vulnerability assessment research content mainly discusses the evaluation methods and models; (3) the research areas are mainly concentrated in China and the United States, with different degrees of distribution in European countries; and (4) the research institutions are mainly the educational institutions and forestry bureaus in various countries. In addition, this paper also reveals the frontier theory of forest ecosystem vulnerability and resilience research from three aspects—theoretical research, index system, and technical methods—puts forward the problems of current research, and suggests that a universally applicable framework for forest ecosystem vulnerability and resilience research should be built in the future, and theoretical research should be strengthened to comprehensively understand the characteristics of forest ecosystems so that sustainable management strategies can be proposed according to local conditions.


2021 ◽  
Vol 6 (3) ◽  
pp. 227-239 ◽  
Author(s):  
Zipan Cai ◽  
Jessica Page ◽  
Vladimir Cvetkovic

Climate change poses a threat to cities. Geospatial information and communication technology (Geo-ICT) assisted planning is increasingly being utilised to foster urban sustainability and adaptability to climate change. To fill the theoretical and practical gaps of urban adaptive planning and Geo-ICT implementation, this article presents an urban ecosystem vulnerability assessment approach using integrated socio-ecological modelling. The application of the Geo-ICT method is demonstrated in a specific case study of climate-resilient city development in Nanjing (China), aiming at helping city decision-makers understand the general geographic data processing and policy revision processes in response to hypothetical future disruptions and pressures on urban social, economic, and environmental systems. Ideally, the conceptual framework of the climate-resilient city transition proposed in this study effectively integrates the geographic data analysis, policy modification, and participatory planning. In the process of model building, we put forward the index system of urban ecosystem vulnerability assessment and use the assessment result as input data for the socio-ecological model. As a result, the model reveals the interaction processes of local land use, economy, and environment, further generating an evolving state of future land use in the studied city. The findings of this study demonstrate that socio-ecological modelling can provide guidance in adjusting the human-land interaction and climate-resilient city development from the perspective of macro policy. The decision support using urban ecosystem vulnerability assessment and quantitative system modelling can be useful for urban development under a variety of environmental change scenarios.


Author(s):  
Wim Verbruggen ◽  
Hans Verbeeck ◽  
Stephanie Horion ◽  
Niels Souverijns ◽  
Guy Schurgers

Author(s):  
Han Li ◽  
Wei Song

As the “Third Pole”, the Qinghai-Tibet Plateau is threatened by environmental changes. Ecosystem vulnerability refers to the sensitivity and resilience of ecosystems to external disturbances. However, there is a lack of relevant studies on the driving factors of ecosystem vulnerability. Therefore, based on spatial principal components analysis and geographic detectors methods, this paper evaluates the ecosystem vulnerability and its driving factors on the Qinghai-Tibet Plateau from the years 2005 to 2015. The results were as follows: (1) The ecosystem vulnerability index (EVI) of the Qinghai-Tibet Plateau is mainly heavy and extreme, showing a gradually increasing trend from southeast to northwest. (2) The spatial heterogeneity of the EVI is significant in the southeast and northwest, but not in the southwest and central parts. (3) Analysis of influencing factors shows that environmental factors have more significant effects on EVI than socioeconomic variables, facilitating the proposal of adequate policy implications. More efforts should be devoted to ecological protection and restoration to prevent grassland degradation and desertification in the high-EVI areas in northwest. The government is also urged to improve the ecological compensation mechanisms and balance ecological protection and residents’ development needs in the southeast.


2021 ◽  
Author(s):  
Johannes Vogel ◽  
Eva Paton ◽  
Valentin Aich

Abstract. Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate extremes. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations, as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ER5 Land) and soil moisture (obtained from ESA CCI and ERA5 Land) lead to extreme reductions of ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: They are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.


2021 ◽  
Author(s):  
Johannes Vogel

<p>The ecosystems of the Mediterranean Basin are particularly prone to climate change and related alterations in climatic anomalies. The seasonal timing of climatic anomalies is crucial for the assessment of the corresponding ecosystem impacts; however, the incorporation of seasonality is neglected in many studies. We quantify ecosystem vulnerability by investigating deviations of the climatic drivers temperature and soil moisture during phases of low ecosystem productivity for each month of the year over the period 1999 – 2019. The fraction of absorbed photosynthetically active radiation (FAPAR) is used as a proxy for ecosystem productivity. Air temperature is obtained from the reanalysis data set ERA5 Land and soil moisture and FAPAR satellite products are retrieved from ESA CCI and Copernicus Global Land Service, respectively. Our results show that Mediterranean ecosystems are vulnerable to three soil moisture regimes during the course of the year. A phase of vulnerability to hot and dry conditions during late spring to midsummer is followed by a period of vulnerability to cold and dry conditions in autumn. The third phase is characterized by cold and wet conditions coinciding with low ecosystem productivity in winter and early spring. These phases illustrate well the shift between a soil moisture-limited regime in summer and an energy-limited regime in winter in the Mediterranean Basin. Notably, the vulnerability to hot and dry conditions during the course of the year is prolonged by several months in the Eastern Mediterranean compared to the Western Mediterranean. Our approach facilitates a better understanding of ecosystem vulnerability at certain stages during the year and is easily transferable to other study areas and ecoclimatological variables.</p>


Sign in / Sign up

Export Citation Format

Share Document