Born-Oppenheimer Type Approximation for a Simple Renormalizable System

Author(s):  
Haci Akbas ◽  
O. Teoman Turgut
Keyword(s):  
Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


2005 ◽  
Vol 12 (4) ◽  
pp. 659-669
Author(s):  
Nawab Hussain ◽  
Donal O'Regan ◽  
Ravi P. Agarwal

Abstract We extend the concept of 𝑅-subweakly commuting maps due to Shahzad [J. Math. Anal. Appl. 257: 39–45, 2001] to the case of non-starshaped domains and obtain common fixed point results for this class of maps on non-starshaped domains in the setup of Fréchet spaces. As applications, we establish Brosowski–Meinardus type approximation theorems. Our results unify and extend the results of Al-Thagafi, Dotson, Habiniak, Jungck and Sessa, Sahab, Khan and Sessa and Shahzad.


Author(s):  
ALEXANDER BRUDNYI

Abstract Let $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk ${\mathbb {D}}\subset {{\mathbb C}}$ . We show that the dense stable rank of $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ is $1$ and, using this fact, prove some nonlinear Runge-type approximation theorems for $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra $H^\infty ({\mathbb {D}})$ .


2021 ◽  
Vol 148 ◽  
pp. 111016
Author(s):  
Bidu Bhusan Jena ◽  
Susanta Kumar Paikray ◽  
Hemen Dutta

1982 ◽  
Vol 60 (4) ◽  
pp. 558-564 ◽  
Author(s):  
F. W. Byron Jr.

A brief survey of available theoretical techniques is given for positron–atom scattering. The distinction between methods involving a finite number of target states and those with an infinite number of target states is emphasized. The situation regarding total cross sections is summarized, and a new, non-perturbative, eikonal-type approximation, based on the work of Wallace, is introduced.


1999 ◽  
Vol 51 (2) ◽  
pp. 267-308 ◽  
Author(s):  
Hitoshi ISHII ◽  
Gabriel E. PIRES ◽  
Panagiotis E. SOUGANIDIS

2018 ◽  
Vol 3 (1) ◽  
pp. 03-09 ◽  
Author(s):  
Hitler Louis ◽  
Ita B. Iserom ◽  
Ozioma U. Akakuru ◽  
Nelson A. Nzeata-Ibe ◽  
Alexander I. Ikeuba ◽  
...  

An exact analytical and approximate solution of the relativistic and non-relativistic wave equations for central potentials has attracted enormous interest in recent years. By using the basic Nikiforov-Uvarov quantum mechanical concepts and formalism, the energy eigenvalue equations and the corresponding wave functions of the Klein–Gordon and Schrodinger equations with the interaction of Modified Hylleraas-Hulthen Potentials (MHHP) were obtained using the conventional Pekeris-type approximation scheme to the orbital centrifugal term. The corresponding unnormalized eigen functions are evaluated in terms of Jacobi polynomials.


Sign in / Sign up

Export Citation Format

Share Document