Combining Crowd Sensing and Social Data Mining with Agent-Based Simulation Using Mobile Agents Towards Augmented Virtuality

Author(s):  
Stefan Bosse ◽  
Uwe H. Engel
Proceedings ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 49 ◽  
Author(s):  
Stefan Bosse ◽  
Uwe Engel

Augmented reality is well known for extending the real world by adding computer-generated perceptual information and overlaid sensory information. In contrast, simulation worlds are commonly closed and rely on artificial sensory information generated by the simulator program or using data collected off-line. In this work, a new simulation paradigm is introduced, providing augmented virtuality by integrating crowd sensing and social data mining in simulation worlds by using mobile agents. The simulation world interacts with real world environments, humans, machines, and other virtual worlds in real-time. Mobile agents are closely related to bots that can interact with humans via chat blogs. Among the mining of physical sensors (temperature, motion, position, light, …), mobile agents can perform Crowd Sensing by participating in question–answer dialogs via a chat blog provided by a WEB App that can be used by the masses. Additionally, mobile agents can act as virtual sensors (offering data exchanged with other agents). Virtual sensors are sensor aggregators performing sensor fusion in a spatially region.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4356 ◽  
Author(s):  
Stefan Bosse ◽  
Uwe Engel

Modelling and simulation of social interaction and networks are of high interest in multiple disciplines and fields of application ranging from fundamental social sciences to smart city management. Future smart city infrastructures and management are characterised by adaptive and self-organising control using real-world sensor data. In this work, humans are considered as sensors. Virtual worlds, e.g., simulations and games, are commonly closed and rely on artificial social behaviour and synthetic sensor information generated by the simulator program or using data collected off-line by surveys. In contrast, real worlds have a higher diversity. Agent-based modelling relies on parameterised models. The selection of suitable parameter sets is crucial to match real-world behaviour. In this work, a framework combining agent-based simulation with crowd sensing and social data mining using mobile agents is introduced. The crowd sensing via chat bots creates augmented virtuality and reality by augmenting the simulated worlds with real-world interaction and vice versa. The simulated world interacts with real-world environments, humans, machines, and other virtual worlds in real-time. Among the mining of physical sensors (e.g., temperature, motion, position, and light) of mobile devices like smartphones, mobile agents can perform crowd sensing by participating in question–answer dialogues via a chat blog (provided by smartphone Apps or integrated into WEB pages and social media). Additionally, mobile agents can act as virtual sensors (offering data exchanged with other agents) and create a bridge between virtual and real worlds. The ubiquitous usage of digital social media has relevant impact on social interaction, mobility, and opinion-making, which has to be considered. Three different use-cases demonstrate the suitability of augmented agent-based simulation for social network analysis using parameterised behavioural models and mobile agent-based crowd sensing. This paper gives a rigorous overview and introduction of the challenges and methodologies used to study and control large-scale and complex socio-technical systems using agent-based methods.


Author(s):  
Loris Belcastro ◽  
Fabrizio Marozzo ◽  
Domenico Talia ◽  
Paolo Trunfio

2015 ◽  
Vol 31 (2) ◽  
pp. 263-281 ◽  
Author(s):  
Stefano Marchetti ◽  
Caterina Giusti ◽  
Monica Pratesi ◽  
Nicola Salvati ◽  
Fosca Giannotti ◽  
...  

Abstract The timely, accurate monitoring of social indicators, such as poverty or inequality, on a finegrained spatial and temporal scale is a crucial tool for understanding social phenomena and policymaking, but poses a great challenge to official statistics. This article argues that an interdisciplinary approach, combining the body of statistical research in small area estimation with the body of research in social data mining based on Big Data, can provide novel means to tackle this problem successfully. Big Data derived from the digital crumbs that humans leave behind in their daily activities are in fact providing ever more accurate proxies of social life. Social data mining from these data, coupled with advanced model-based techniques for fine-grained estimates, have the potential to provide a novel microscope through which to view and understand social complexity. This article suggests three ways to use Big Data together with small area estimation techniques, and shows how Big Data has the potential to mirror aspects of well-being and other socioeconomic phenomena.


Sign in / Sign up

Export Citation Format

Share Document