scholarly journals Modelling Neuromodulated Information Flow and Energetic Consumption at Thalamic Relay Synapses

Author(s):  
Mireille Conrad ◽  
Renaud B. Jolivet
2020 ◽  
Author(s):  
Mireille Conrad ◽  
Renaud B Jolivet

AbstractInformation theory has become an essential tool of modern neuroscience. It can however be difficult to apply in experimental contexts when acquisition of very large datasets is prohibitive. Here, we compare the relative performance of two information theoretic measures, mutual information and transfer entropy, for the analysis of information flow and energetic consumption at synapses. We show that transfer entropy outperforms mutual information in terms of reliability of estimates for small datasets. However, we also show that a detailed understanding of the underlying neuronal biophysics is essential for properly interpreting the results obtained with transfer entropy. We conclude that when time and experimental conditions permit, mutual information might provide an easier to interpret alternative. Finally, we apply both measures to the study of energetic optimality of information flow at thalamic relay synapses in the visual pathway. We show that both measures recapitulate the experimental finding that these synapses are tuned to optimally balance information flowing through them with the energetic consumption associated with that synaptic and neuronal activity. Our results highlight the importance of conducting systematic computational studies prior to applying information theoretic tools to experimental data.Author summaryInformation theory has become an essential tool of modern neuroscience. It is being routinely used to evaluate how much information flows from external stimuli to various brain regions or individual neurons. It is also used to evaluate how information flows between brain regions, between neurons, across synapses, or in neural networks. Information theory offers multiple measures to do that. Two of the most popular are mutual information and transfer entropy. While these measures are related to each other, they differ in one important aspect: transfer entropy reports a directional flow of information, as mutual information does not. Here, we proceed to a systematic evaluation of their respective performances and trade-offs from the perspective of an experimentalist looking to apply these measures to binarized spike trains. We show that transfer entropy might be a better choice than mutual information when time for experimental data collection is limited, as it appears less affected by systematic biases induced by a relative lack of data. Transmission delays and integration properties of the output neuron can however complicate this picture, and we provide an example of the effect this has on both measures. We conclude that when time and experimental conditions permit, mutual information – especially when estimated using a method referred to as the ‘direct’ method – might provide an easier to interpret alternative. Finally, we apply both measures in the biophysical context of evaluating the energetic optimality of information flow at thalamic relay synapses in the visual pathway. We show that both measures capture the original experimental finding that those synapses are tuned to optimally balance information flowing through them with the concomitant energetic consumption associated with that synaptic and neuronal activity.


2020 ◽  
Vol 3 (2) ◽  
pp. 97-105
Author(s):  
Lingga Yuliana

The purpose of this research is to find out the product flow, financial flow and information flow in the management of the supply chain plate rack based on the existing supply chain so that the company can produce effectively and efficiently. The research method used is a qualitative method using a survey method that is to explain, describe and interpret a phenomenon that occurs in an object and qualitative data with the support of quantitative data. The results showed the company combining assembly material team, glass assembly team and final completion teams could accelerate production and limit cooperation with independent marketing to summarize the supply chain and prevent company losses.


2014 ◽  
Vol 24 (12) ◽  
pp. 2767-2781
Author(s):  
Hao SUN ◽  
Hui-Peng LI ◽  
Qing-Kai ZENG
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document