Forecasting COVID-19 Time Series Based on an Autoregressive Model

Author(s):  
Joao Alexandre Lobo Marques ◽  
Francisco Nauber Bernardo Gois ◽  
José Xavier-Neto ◽  
Simon James Fong
Risks ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 51
Author(s):  
Anthony Medford

Best practice life expectancy has recently been modeled using extreme value theory. In this paper we present the Gumbel autoregressive model of order one—Gumbel AR(1)—as an option for modeling best practice life expectancy. This class of model represents a neat and coherent framework for modeling time series extremes. The Gumbel distribution accounts for the extreme nature of best practice life expectancy, while the AR structure accounts for the temporal dependence in the time series. Model diagnostics and simulation results indicate that these models present a viable alternative to Gaussian AR(1) models when dealing with time series of extremes and merit further exploration.


2016 ◽  
Vol 12 (S325) ◽  
pp. 259-262
Author(s):  
Susana Eyheramendy ◽  
Felipe Elorrieta ◽  
Wilfredo Palma

AbstractThis paper discusses an autoregressive model for the analysis of irregularly observed time series. The properties of this model are studied and a maximum likelihood estimation procedure is proposed. The finite sample performance of this estimator is assessed by Monte Carlo simulations, showing accurate estimators. We implement this model to the residuals after fitting an harmonic model to light-curves from periodic variable stars from the Optical Gravitational Lensing Experiment (OGLE) and Hipparcos surveys, showing that the model can identify time dependency structure that remains in the residuals when, for example, the period of the light-curves was not properly estimated.


2017 ◽  
Vol 1 ◽  
pp. 41-54 ◽  
Author(s):  
Amrit Subedi

Background: There are various approaches of modeling on time series data. Most of the studies conducted regarding time series data are based on annual trend whereas very few concerned with data having monthly fluctuation. The data of tourist arrivals is an example of time series data with monthly fluctuation which reveals that there is higher number of tourist arrivals in some months/seasons whereas others have less number. Starting from January, it makes a complete cycle in every 12 months with 3 bends indicating that it can be captured by biquadratic function.Objective: To provide an alternative approach of modeling i.e. combination of Autoregressive model with polynomial (biquadratic) function on time series data with monthly/seasonal fluctuation and compare its adequacy with widely used cyclic autoregressive model i.e. AR (12).Materials and Methods: This study is based on monthly data of tourist arrivals in Nepal. Firstly, usual time series model AR (12) has been adopted and an alternative approach of modeling has been attempted combining AR and biquadratic function. The first part of the model i.e. AR represents annual trend whereas biquadratic part does for monthly fluctuation.Results: The fitted cyclic autoregressive model on monthly data of tourist arrivals is Est. Ym = 3614.33 + 0.9509Ym-12, (R2=0.80); Est. Ym indicates predicted tourist arrivals for mth month and Ym-12 indicates observed tourist arrivals in (m-12)th month and the combined model of AR and biquadratic function is Est. Yt(m) = -46464.6 + 1.000Yt-1 + 52911.56m - 17177m2 + 2043.95m3 - 79.43m4, (R2=0.78); Est. Yt(m) indicates predicted tourist arrivals for mth month of tth year and Yt-1 indicates average tourist arrivals in (t-1)th year. The AR model combined with polynomial function reveals normal and homoscedastic residuals more accurately compared to first one.Conclusion: The use of polynomial function combined with autoregressive model can be useful for time series data having seasonal fluctuation. It can be an alternative approach for picking up a good model for such type of data. Nepalese Journal of Statistics, 2017,  Vol. 1, 41-54


2017 ◽  
Vol 22 (38) ◽  
Author(s):  
Charline Maertens de Noordhout ◽  
Brecht Devleesschauwer ◽  
Juanita A Haagsma ◽  
Arie H Havelaar ◽  
Sophie Bertrand ◽  
...  

Salmonellosis, campylobacteriosis and listeriosis are food-borne diseases. We estimated and forecasted the number of cases of these three diseases in Belgium from 2012 to 2020, and calculated the corresponding number of disability-adjusted life years (DALYs). The salmonellosis time series was fitted with a Bai and Perron two-breakpoint model, while a dynamic linear model was used for campylobacteriosis and a Poisson autoregressive model for listeriosis. The average monthly number of cases of salmonellosis was 264 (standard deviation (SD): 86) in 2012 and predicted to be 212 (SD: 87) in 2020; campylobacteriosis case numbers were 633 (SD: 81) and 1,081 (SD: 311); listeriosis case numbers were 5 (SD: 2) in 2012 and 6 (SD: 3) in 2014. After applying correction factors, the estimated DALYs for salmonellosis were 102 (95% uncertainty interval (UI): 8–376) in 2012 and predicted to be 82 (95% UI: 6–310) in 2020; campylobacteriosis DALYs were 1,019 (95% UI: 137–3,181) and 1,736 (95% UI: 178–5,874); listeriosis DALYs were 208 (95% UI: 192–226) in 2012 and 252 (95% UI: 200–307) in 2014. New actions are needed to reduce the risk of food-borne infection with Campylobacter spp. because campylobacteriosis incidence may almost double through 2020.


Sign in / Sign up

Export Citation Format

Share Document