Discrete Time Sensorless PMSM Control Using an Extended Kalman Filter for Electric Vehicle Traction Systems Fed by Multi Level Inverter

Author(s):  
A. Khemis R. ◽  
T. Boutabba ◽  
S. Drid
2000 ◽  
Vol 10 (04) ◽  
pp. 763-775 ◽  
Author(s):  
C. CRUZ ◽  
H. NIJMEIJER

We study the synchronization problem in discrete-time via an extended Kalman filter (EKF). That is, synchronization is obtained of transmitter and receiver dynamics in case the receiver is given via an EKF that is driven by a noisy drive signal from a noisy transmitter dynamics. The convergence of the filter dynamics towards the transmitter dynamics is rigorously shown using recent results in extended Kalman filtering. Two extensive simulation examples show that the filter is indeed suitable for synchronization of (noisy) chaotic transmitter dynamics. An application to private communication is also given.


2014 ◽  
Vol 953-954 ◽  
pp. 796-799
Author(s):  
Huan Huan Sun ◽  
Jun Bi ◽  
Sai Shao

Accurate estimation of battery state of charge (SOC) is important to ensure operation of electric vehicle. Since a nonlinear feature exists in battery system and extended kalman filter algorithm performs well in solving nonlinear problems, the paper proposes an EKF-based method for estimating SOC. In order to obtain the accurate estimation of SOC, this paper is based on composite battery model that is a combination of three battery models. The parameters are identified using the least square method. Then a state equation and an output equation are identified. All experimental data are collected from operating EV in Beijing. The results of the experiment show  that the relative error of estimation of state of charge is reasonable, which proves this method has good estimation performance.


Sign in / Sign up

Export Citation Format

Share Document