Experimentation and Evaluation of Biodegradative Kinetic Parameters of Nitrate Removal from Drinking Water

Author(s):  
Rajakumar Sundaram ◽  
P. M. Ayyasamy ◽  
S. Umadevi ◽  
Y. C. Song ◽  
P. Lakshmanaperumalsamy
2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 489-495 ◽  
Author(s):  
S. Aslan ◽  
A. Türkman

Denitrification of drinking water was studied using various natural organic solid substrates (NOSS) such as poplar, hornbeam, pine shavings and wheat straw as a carbon source in a batch unit. The highest nitrate removal efficiency was observed with the wheat straw, so it was chosen as the carbon source for biodenitrification in an upflow laboratory reactor. In order to remove solid particles from the effluent water, a sand filter unit was placed after the denitrification reactor. The soluble DOC contents in the reactor affected the efficiency of nitrate elimination and nitrate concentration of the effluent water remained below acceptable values (50 mg/l NO3-). In order to remove colour, DOC and nitrate from the water, powdered activated carbon adsorption studies were performed in the batch unit.


Opflow ◽  
2017 ◽  
Vol 109 ◽  
pp. E144-E157 ◽  
Author(s):  
Madison Bertoch ◽  
Allison M. Bergquist ◽  
Gary Gildert ◽  
Timothy J. Strathmann ◽  
Charles J. Werth

Sign in / Sign up

Export Citation Format

Share Document