contaminated drinking water
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 82)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Charlotte R. Doran ◽  
Ann Aschengrau

Abstract Background Communities in Cape Cod, Massachusetts were exposed to tetrachloroethylene (PCE) through contaminated drinking water from 1969 to 1983. PCE exposure during adulthood has well-established neurotoxic effects; however, long-term impacts stemming from early life exposure, especially adverse effects on sleep quality, are not well understood. Methods The present analysis was based on data from the Cape Cod Health Study, a retrospective cohort study of the long-term neurotoxic impacts of early-life exposure to PCE-contaminated drinking water. Exposure to PCE-contaminated water was estimated using a validated leaching and transport model. Measures of sleep quality were obtained from self-administered questionnaires. Generalized estimating equations were used to generate risk ratios and 95% confidence intervals to estimate the association between early-life PCE exposure and sleep quality among 604 participants. Results Compared to unexposed participants, any PCE exposure during early life was associated with 1.57 times the risk of reporting breathing pauses during sleep (95% CI 0.92–2.68). Low-level exposure to PCE was associated with 1.50 times the risk of reporting sleep apnea or other sleep disorders (95% CI 0.78–2.89), while high levels of exposure had comparable risk compared to no exposure (RR = 0.94, 95% CI 0.50–1.79). Weak or no associations were observed for other sleep quality outcomes. In stratified analyses participants with mental illness and/or substance use disorder had increased risk ratios for short sleep duration associated with PCE exposure. Conclusion These findings suggest that early-life exposure to PCE may be associated with a moderate increase in the risk of reporting breathing pauses during sleep in adulthood and that a history of mental illness and/or substance use disorder may exacerbate the risk of short sleep duration.


2022 ◽  
Vol 302 ◽  
pp. 114115
Author(s):  
Malcolm Watson ◽  
Jasmina Nikić ◽  
Aleksandra Tubić ◽  
Marijana Kragulj Isakovski ◽  
Marko Šolić ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 188-195
Author(s):  
Binay Kumar Basumatary

People on Earth are under tremendous threat due to undesired changes in the physical, chemical and biological characteristics of water and soil. Due to increased human population, industrialization, use of unwanted amounts of fertilizers and man-made activities, water and soil is highly polluted with different harmful contaminants. Natural water and soil contaminates due to weathering of rocks and leaching of soils, mining processing etc. It is necessary that the quality of drinking water and soil should be checked at regular time interval, because due to use of contaminated drinking water, human population suffers from variety of water borne diseases. The study area, Gossaigaon sub-division of Kokrajhar district, Assam lies on the north bank of the Brahmaputra river and is slowly sloping towards south from the foothills of Bhutan upto an average height of 42 MSL. The tributaries of the Brahmaputra- Sankosh, Ripu, Dambra, Bura chara, Gadadhar, Gurufella, Madati, Hel, Gongea are flowing southward which have their sources in the Himalayas. In this paper an attempt has been made to assess the quality of soil of 10 different stations by considering the parameters like Colour, Temperature, pH value, Conductance, Alkalinity, Dissolved Oxygen, Hardness, TS, TDS, Chlorine, Fluorine, Sulphur, Nitrogen, Phosphorous, Iron, Calcium and Magnesium, Sodium, Potassium, Zinc, Nickel, Lead and Copper which have direct correlation with human health.


Author(s):  
Christel Nielsen ◽  
Anna Jöud

There is concern that immunotoxic environmental contaminants, particularly perfluoroalkyl substances (PFAS), may play a role in the clinical course of COVID-19 and epidemiologic studies are needed to answer if high-exposed populations are especially vulnerable in light of the ongoing pandemic. The objective was, therefore, to determine if exposure to highly PFAS-contaminated drinking water was associated with an increased incidence of COVID-19 in Ronneby, Sweden, during the first year of the pandemic. We conducted an ecological study determining the sex- and age-standardized incidence ratio (SIR) in the adult population relative to a neighboring reference town with similar demographic characteristics but with only background levels of exposure. In Sweden, COVID-19 is subject to mandatory reporting, and we retrieved aggregated data on all verified cases until 3 March 2021 from the Public Health Agency of Sweden. The SIR in Ronneby was estimated at 1.19 (95% CI: 1.12; 1.27). The results suggest a potential link between high PFAS exposure and susceptibility to COVID-19 that warrants further research to clarify causality.


2021 ◽  
pp. 096032712110459
Author(s):  
Macario Martínez-Castillo ◽  
Eliud A García-Montalvo ◽  
Mónica G Arellano-Mendoza ◽  
Luz del C Sánchez-Peña ◽  
Luis E Soria Jasso ◽  
...  

Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.


2021 ◽  
Vol 2 (10) ◽  
pp. 920-925
Author(s):  
Shanti Lal Choubisa ◽  
Anurag Choubisa

Fluorosis in man and animals is the resultant of chronic exposure of Fluoride (F) for prolonged period through F contaminated drinking water and foods and industrial F pollution. However, fluoridated water and industrial F emissions are the major sources of F exposure for humans and domestic animals. Chronic F exposure not only deteriorate the health of human beings and animals but also causes diverse adverse toxic effects on hard (teeth and bones) and soft (organs) tissues. Various F induced pathological changes in teeth and bones are known as dental and skeletal fluorosis, respectively. However, skeletal fluorosis is more dangerous and highly significant since it diminishes the mobility at a very early age and develops crippling or lameness bone deformity. Thousands of people and domestic animals are suffering with fluorosis worldwide. Dental fluorosis is rampant and the commonest form of chronic F toxicosis and appears in subjects of almost all age groups. However, children and bovine calves are relatively more sensitive and highly susceptible to F toxicosis and revealed the earliest clinical sign of chronic F poisoning in the form of dental fluorosis. Hence, these are ideal bio-indicators for chronic F intoxication or fluorosis. Nevertheless, the magnitude or severity of fluorosis is much more depending on the density and rate of bio-accumulation of F. Biological samples, milk, urine, blood serum, teeth, nails, etc. are better bio-markers for F intoxication. However, urine F concentration is the best bio-marker for endemic of F and fluorosis. In this communication, ideal bio-indicators and bio-markers for endemic of F and fluorosis and diverse potential determinants influencing the severity of F toxicity (fluorosis) are considered and briefly and critically reviewed. Findings of this review are useful in making and implementation of health policy and the commencement of mitigation and control of fluorosis programme in F endemic areas where it is problematic for human and animal health.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tony Fletcher ◽  
Annibale Biggeri ◽  
Francesca Russo ◽  
Dario Gregori ◽  
Gisella Pitter ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2187
Author(s):  
Davide Marzi ◽  
Maria Luisa Antenozio ◽  
Sara Vernazzaro ◽  
Clara Sette ◽  
Enrico Veschetti ◽  
...  

The reuse of Pteris vittata plants for multiple phytofiltration cycles is a main issue to allow an efficient phytoremediation of arsenic (As)-contaminated groundwater. Here, we assessed the capacity of phytofiltration of P. vittata plants grown for two cycles on naturally As-contaminated drinking water (collected in Central Italy), spaced by a growth cycle on non-contaminated water (N cycle). P. vittata young plants, with extensive frond and root development, were suspended individually in 15 L of water with initial As of 59 µg/L, without any additional treatment or water refilling. During cycle 1, in 45 days P. vittata plants reduced As concentration below 10 µg/L, the allowed EU limits for drinking water. During the subsequent 30 day-N cycle on non-contaminated water, no leaching of As from the roots was observed, while the water pH increased 0.9 Units, but is within the allowed limits. During cycle 2, under the same conditions as cycle 1, As concentration decreased below 10 µg/L in less than seven days. These results show that P. vittata young plants, previously used for the phytofiltration of As, do not extrude As and, when reused, remove As much more rapidly. No additional treatments were required during phytofiltration and thus this represents a sustainable, efficient, and scalable strategy.


Sign in / Sign up

Export Citation Format

Share Document