An End-to-End Framework for Productive Use of Machine Learning in Software Analytics and Business Intelligence Solutions

Author(s):  
Iris Figalist ◽  
Christoph Elsner ◽  
Jan Bosch ◽  
Helena Holmström Olsson
Author(s):  
Yun Peng ◽  
Byron Choi ◽  
Jianliang Xu

AbstractGraphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods. For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3691
Author(s):  
Ciprian Orhei ◽  
Silviu Vert ◽  
Muguras Mocofan ◽  
Radu Vasiu

Computer Vision is a cross-research field with the main purpose of understanding the surrounding environment as closely as possible to human perception. The image processing systems is continuously growing and expanding into more complex systems, usually tailored to the certain needs or applications it may serve. To better serve this purpose, research on the architecture and design of such systems is also important. We present the End-to-End Computer Vision Framework, an open-source solution that aims to support researchers and teachers within the image processing vast field. The framework has incorporated Computer Vision features and Machine Learning models that researchers can use. In the continuous need to add new Computer Vision algorithms for a day-to-day research activity, our proposed framework has an advantage given by the configurable and scalar architecture. Even if the main focus of the framework is on the Computer Vision processing pipeline, the framework offers solutions to incorporate even more complex activities, such as training Machine Learning models. EECVF aims to become a useful tool for learning activities in the Computer Vision field, as it allows the learner and the teacher to handle only the topics at hand, and not the interconnection necessary for visual processing flow.


2021 ◽  
Author(s):  
My-Linh Nguyen ◽  
Thao Phung ◽  
Duong-Hai Ly ◽  
Hong-Linh Truong

Author(s):  
Ihor Ponomarenko ◽  
Oleksandra Lubkovska

The subject of the research is the approach to the possibility of using data science methods in the field of health care for integrated data processing and analysis in order to optimize economic and specialized processes The purpose of writing this article is to address issues related to the specifics of the use of Data Science methods in the field of health care on the basis of comprehensive information obtained from various sources. Methodology. The research methodology is system-structural and comparative analyzes (to study the application of BI-systems in the process of working with large data sets); monograph (the study of various software solutions in the market of business intelligence); economic analysis (when assessing the possibility of using business intelligence systems to strengthen the competitive position of companies). The scientific novelty the main sources of data on key processes in the medical field. Examples of innovative methods of collecting information in the field of health care, which are becoming widespread in the context of digitalization, are presented. The main sources of data in the field of health care used in Data Science are revealed. The specifics of the application of machine learning methods in the field of health care in the conditions of increasing competition between market participants and increasing demand for relevant products from the population are presented. Conclusions. The intensification of the integration of Data Science in the medical field is due to the increase of digitized data (statistics, textual informa- tion, visualizations, etc.). Through the use of machine learning methods, doctors and other health professionals have new opportunities to improve the efficiency of the health care system as a whole. Key words: Data science, efficiency, information, machine learning, medicine, Python, healthcare.


Author(s):  
Adam Siemieniuk ◽  
Lorenzo Chelini ◽  
Asif Ali Khan ◽  
Jeronimo Castrillon ◽  
Andi Drebes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document