Deep Point Cloud Odometry: A Deep Learning Based Odometry with 3D Laser Point Clouds

Author(s):  
Chi Li ◽  
Yisha Liu ◽  
Fei Yan ◽  
Yan Zhuang
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 884
Author(s):  
Chia-Ming Tsai ◽  
Yi-Horng Lai ◽  
Yung-Da Sun ◽  
Yu-Jen Chung ◽  
Jau-Woei Perng

Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.


2020 ◽  
Vol 12 (14) ◽  
pp. 2181
Author(s):  
Hangbin Wu ◽  
Huimin Yang ◽  
Shengyu Huang ◽  
Doudou Zeng ◽  
Chun Liu ◽  
...  

The existing deep learning methods for point cloud classification are trained using abundant labeled samples and used to test only a few samples. However, classification tasks are diverse, and not all tasks have enough labeled samples for training. In this paper, a novel point cloud classification method for indoor components using few labeled samples is proposed to solve the problem of the requirement for abundant labeled samples for training with deep learning classification methods. This method is composed of four parts: mixing samples, feature extraction, dimensionality reduction, and semantic classification. First, the few labeled point clouds are mixed with unlabeled point clouds. Next, the mixed high-dimensional features are extracted using a deep learning framework. Subsequently, a nonlinear manifold learning method is used to embed the mixed features into a low-dimensional space. Finally, the few labeled point clouds in each cluster are identified, and semantic labels are provided for unlabeled point clouds in the same cluster by a neighborhood search strategy. The validity and versatility of the proposed method were validated by different experiments and compared with three state-of-the-art deep learning methods. Our method uses fewer than 30 labeled point clouds to achieve an accuracy that is 1.89–19.67% greater than existing methods. More importantly, the experimental results suggest that this method is not only suitable for single-attribute indoor scenarios but also for comprehensive complex indoor scenarios.


2020 ◽  
Vol 12 (1) ◽  
pp. 178 ◽  
Author(s):  
Jinming Zhang ◽  
Xiangyun Hu ◽  
Hengming Dai ◽  
ShenRun Qu

It is difficult to extract a digital elevation model (DEM) from an airborne laser scanning (ALS) point cloud in a forest area because of the irregular and uneven distribution of ground and vegetation points. Machine learning, especially deep learning methods, has shown powerful feature extraction in accomplishing point cloud classification. However, most of the existing deep learning frameworks, such as PointNet, dynamic graph convolutional neural network (DGCNN), and SparseConvNet, cannot consider the particularity of ALS point clouds. For large-scene laser point clouds, the current data preprocessing methods are mostly based on random sampling, which is not suitable for DEM extraction tasks. In this study, we propose a novel data sampling algorithm for the data preparation of patch-based training and classification named T-Sampling. T-Sampling uses the set of the lowest points in a certain area as basic points with other points added to supplement it, which can guarantee the integrity of the terrain in the sampling area. In the learning part, we propose a new convolution model based on terrain named Tin-EdgeConv that fully considers the spatial relationship between ground and non-ground points when constructing a directed graph. We design a new network based on Tin-EdgeConv to extract local features and use PointNet architecture to extract global context information. Finally, we combine this information effectively with a designed attention fusion module. These aspects are important in achieving high classification accuracy. We evaluate the proposed method by using large-scale data from forest areas. Results show that our method is more accurate than existing algorithms.


2019 ◽  
Vol 8 (5) ◽  
pp. 213 ◽  
Author(s):  
Florent Poux ◽  
Roland Billen

Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning.


Author(s):  
D. Tosic ◽  
S. Tuttas ◽  
L. Hoegner ◽  
U. Stilla

<p><strong>Abstract.</strong> This work proposes an approach for semantic classification of an outdoor-scene point cloud acquired with a high precision Mobile Mapping System (MMS), with major goal to contribute to the automatic creation of High Definition (HD) Maps. The automatic point labeling is achieved by utilizing the combination of a feature-based approach for semantic classification of point clouds and a deep learning approach for semantic segmentation of images. Both, point cloud data, as well as the data from a multi-camera system are used for gaining spatial information in an urban scene. Two types of classification applied for this task are: 1) Feature-based approach, in which the point cloud is organized into a supervoxel structure for capturing geometric characteristics of points. Several geometric features are then extracted for appropriate representation of the local geometry, followed by removing the effect of local tendency for each supervoxel to enhance the distinction between similar structures. And lastly, the Random Forests (RF) algorithm is applied in the classification phase, for assigning labels to supervoxels and therefore to points within them. 2) The deep learning approach is employed for semantic segmentation of MMS images of the same scene. To achieve this, an implementation of Pyramid Scene Parsing Network is used. Resulting segmented images with each pixel containing a class label are then projected onto the point cloud, enabling label assignment for each point. At the end, experiment results are presented from a complex urban scene and the performance of this method is evaluated on a manually labeled dataset, for the deep learning and feature-based classification individually, as well as for the result of the labels fusion. The achieved overall accuracy with fusioned output is 0.87 on the final test set, which significantly outperforms the results of individual methods on the same point cloud. The labeled data is published on the TUM-PF Semantic-Labeling-Benchmark.</p>


Author(s):  
A. Nurunnabi ◽  
F. N. Teferle ◽  
J. Li ◽  
R. C. Lindenbergh ◽  
A. Hunegnaw

Abstract. Ground surface extraction is one of the classic tasks in airborne laser scanning (ALS) point cloud processing that is used for three-dimensional (3D) city modelling, infrastructure health monitoring, and disaster management. Many methods have been developed over the last three decades. Recently, Deep Learning (DL) has become the most dominant technique for 3D point cloud classification. DL methods used for classification can be categorized into end-to-end and non end-to-end approaches. One of the main challenges of using supervised DL approaches is getting a sufficient amount of training data. The main advantage of using a supervised non end-to-end approach is that it requires less training data. This paper introduces a novel local feature-based non end-to-end DL algorithm that generates a binary classifier for ground point filtering. It studies feature relevance, and investigates three models that are different combinations of features. This method is free from the limitations of point clouds’ irregular data structure and varying data density, which is the biggest challenge for using the elegant convolutional neural network. The new algorithm does not require transforming data into regular 3D voxel grids or any rasterization. The performance of the new method has been demonstrated through two ALS datasets covering urban environments. The method successfully labels ground and non-ground points in the presence of steep slopes and height discontinuity in the terrain. Experiments in this paper show that the algorithm achieves around 97% in both F1-score and model accuracy for ground point labelling.


2020 ◽  
Vol 12 (6) ◽  
pp. 1005 ◽  
Author(s):  
Roberto Pierdicca ◽  
Marina Paolanti ◽  
Francesca Matrone ◽  
Massimo Martini ◽  
Christian Morbidoni ◽  
...  

In the Digital Cultural Heritage (DCH) domain, the semantic segmentation of 3D Point Clouds with Deep Learning (DL) techniques can help to recognize historical architectural elements, at an adequate level of detail, and thus speed up the process of modeling of historical buildings for developing BIM models from survey data, referred to as HBIM (Historical Building Information Modeling). In this paper, we propose a DL framework for Point Cloud segmentation, which employs an improved DGCNN (Dynamic Graph Convolutional Neural Network) by adding meaningful features such as normal and colour. The approach has been applied to a newly collected DCH Dataset which is publicy available: ArCH (Architectural Cultural Heritage) Dataset. This dataset comprises 11 labeled points clouds, derived from the union of several single scans or from the integration of the latter with photogrammetric surveys. The involved scenes are both indoor and outdoor, with churches, chapels, cloisters, porticoes and loggias covered by a variety of vaults and beared by many different types of columns. They belong to different historical periods and different styles, in order to make the dataset the least possible uniform and homogeneous (in the repetition of the architectural elements) and the results as general as possible. The experiments yield high accuracy, demonstrating the effectiveness and suitability of the proposed approach.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 323 ◽  
Author(s):  
Gordana Jakovljevic ◽  
Miro Govedarica ◽  
Flor Alvarez-Taboada ◽  
Vladimir Pajic

Digital elevation model (DEM) has been frequently used for the reduction and management of flood risk. Various classification methods have been developed to extract DEM from point clouds. However, the accuracy and computational efficiency need to be improved. The objectives of this study were as follows: (1) to determine the suitability of a new method to produce DEM from unmanned aerial vehicle (UAV) and light detection and ranging (LiDAR) data, using a raw point cloud classification and ground point filtering based on deep learning and neural networks (NN); (2) to test the convenience of rebalancing datasets for point cloud classification; (3) to evaluate the effect of the land cover class on the algorithm performance and the elevation accuracy; and (4) to assess the usability of the LiDAR and UAV structure from motion (SfM) DEM in flood risk mapping. In this paper, a new method of raw point cloud classification and ground point filtering based on deep learning using NN is proposed and tested on LiDAR and UAV data. The NN was trained on approximately 6 million points from which local and global geometric features and intensity data were extracted. Pixel-by-pixel accuracy assessment and visual inspection confirmed that filtering point clouds based on deep learning using NN is an appropriate technique for ground classification and producing DEM, as for the test and validation areas, both ground and non-ground classes achieved high recall (>0.70) and high precision values (>0.85), which showed that the two classes were well handled by the model. The type of method used for balancing the original dataset did not have a significant influence in the algorithm accuracy, and it was suggested not to use any of them unless the distribution of the generated and real data set will remain the same. Furthermore, the comparisons between true data and LiDAR and a UAV structure from motion (UAV SfM) point clouds were analyzed, as well as the derived DEM. The root mean square error (RMSE) and the mean average error (MAE) of the DEM were 0.25 m and 0.05 m, respectively, for LiDAR data, and 0.59 m and –0.28 m, respectively, for UAV data. For all land cover classes, the UAV DEM overestimated the elevation, whereas the LIDAR DEM underestimated it. The accuracy was not significantly different in the LiDAR DEM for the different vegetation classes, while for the UAV DEM, the RMSE increased with the height of the vegetation class. The comparison of the inundation areas derived from true LiDAR and UAV data for different water levels showed that in all cases, the largest differences were obtained for the lowest water level tested, while they performed best for very high water levels. Overall, the approach presented in this work produced DEM from LiDAR and UAV data with the required accuracy for flood mapping according to European Flood Directive standards. Although LiDAR is the recommended technology for point cloud acquisition, a suitable alternative is also UAV SfM in hilly areas.


2021 ◽  
Vol 3 (3) ◽  
pp. 601-614
Author(s):  
Hongbin Lin ◽  
Wu Zheng ◽  
Xiuping Peng

With the introduction of effective and general deep learning network frameworks, deep learning based methods have achieved remarkable success in various visual tasks. However, there are still tough challenges in applying them to convolutional neural networks due to the lack of a potential rule structure of point clouds. Therefore, by taking the original point clouds as the input data, this paper proposes an orientation-encoding (OE) convolutional module and designs a convolutional neural network for effectively extracting local geometric features of point sets. By searching for the same number of points in 8 directions and arranging them in order in 8 directions, the OE convolution is then carried out according to the number of points in the direction, which realizes the effective feature learning of the local structure of the point sets. Further experiments on diverse datasets show that the proposed method has competitive performance on classification and segmentation tasks of point sets.


Sign in / Sign up

Export Citation Format

Share Document