scholarly journals Classification of Point Clouds for Indoor Components Using Few Labeled Samples

2020 ◽  
Vol 12 (14) ◽  
pp. 2181
Author(s):  
Hangbin Wu ◽  
Huimin Yang ◽  
Shengyu Huang ◽  
Doudou Zeng ◽  
Chun Liu ◽  
...  

The existing deep learning methods for point cloud classification are trained using abundant labeled samples and used to test only a few samples. However, classification tasks are diverse, and not all tasks have enough labeled samples for training. In this paper, a novel point cloud classification method for indoor components using few labeled samples is proposed to solve the problem of the requirement for abundant labeled samples for training with deep learning classification methods. This method is composed of four parts: mixing samples, feature extraction, dimensionality reduction, and semantic classification. First, the few labeled point clouds are mixed with unlabeled point clouds. Next, the mixed high-dimensional features are extracted using a deep learning framework. Subsequently, a nonlinear manifold learning method is used to embed the mixed features into a low-dimensional space. Finally, the few labeled point clouds in each cluster are identified, and semantic labels are provided for unlabeled point clouds in the same cluster by a neighborhood search strategy. The validity and versatility of the proposed method were validated by different experiments and compared with three state-of-the-art deep learning methods. Our method uses fewer than 30 labeled point clouds to achieve an accuracy that is 1.89–19.67% greater than existing methods. More importantly, the experimental results suggest that this method is not only suitable for single-attribute indoor scenarios but also for comprehensive complex indoor scenarios.

Author(s):  
T. Hackel ◽  
N. Savinov ◽  
L. Ladicky ◽  
J. D. Wegner ◽  
K. Schindler ◽  
...  

This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 323 ◽  
Author(s):  
Gordana Jakovljevic ◽  
Miro Govedarica ◽  
Flor Alvarez-Taboada ◽  
Vladimir Pajic

Digital elevation model (DEM) has been frequently used for the reduction and management of flood risk. Various classification methods have been developed to extract DEM from point clouds. However, the accuracy and computational efficiency need to be improved. The objectives of this study were as follows: (1) to determine the suitability of a new method to produce DEM from unmanned aerial vehicle (UAV) and light detection and ranging (LiDAR) data, using a raw point cloud classification and ground point filtering based on deep learning and neural networks (NN); (2) to test the convenience of rebalancing datasets for point cloud classification; (3) to evaluate the effect of the land cover class on the algorithm performance and the elevation accuracy; and (4) to assess the usability of the LiDAR and UAV structure from motion (SfM) DEM in flood risk mapping. In this paper, a new method of raw point cloud classification and ground point filtering based on deep learning using NN is proposed and tested on LiDAR and UAV data. The NN was trained on approximately 6 million points from which local and global geometric features and intensity data were extracted. Pixel-by-pixel accuracy assessment and visual inspection confirmed that filtering point clouds based on deep learning using NN is an appropriate technique for ground classification and producing DEM, as for the test and validation areas, both ground and non-ground classes achieved high recall (>0.70) and high precision values (>0.85), which showed that the two classes were well handled by the model. The type of method used for balancing the original dataset did not have a significant influence in the algorithm accuracy, and it was suggested not to use any of them unless the distribution of the generated and real data set will remain the same. Furthermore, the comparisons between true data and LiDAR and a UAV structure from motion (UAV SfM) point clouds were analyzed, as well as the derived DEM. The root mean square error (RMSE) and the mean average error (MAE) of the DEM were 0.25 m and 0.05 m, respectively, for LiDAR data, and 0.59 m and –0.28 m, respectively, for UAV data. For all land cover classes, the UAV DEM overestimated the elevation, whereas the LIDAR DEM underestimated it. The accuracy was not significantly different in the LiDAR DEM for the different vegetation classes, while for the UAV DEM, the RMSE increased with the height of the vegetation class. The comparison of the inundation areas derived from true LiDAR and UAV data for different water levels showed that in all cases, the largest differences were obtained for the lowest water level tested, while they performed best for very high water levels. Overall, the approach presented in this work produced DEM from LiDAR and UAV data with the required accuracy for flood mapping according to European Flood Directive standards. Although LiDAR is the recommended technology for point cloud acquisition, a suitable alternative is also UAV SfM in hilly areas.


2021 ◽  
Vol 13 (17) ◽  
pp. 3427
Author(s):  
Chunjiao Zhang ◽  
Shenghua Xu ◽  
Tao Jiang ◽  
Jiping Liu ◽  
Zhengjun Liu ◽  
...  

LiDAR point clouds are rich in spatial information and can effectively express the size, shape, position, and direction of objects; thus, they have the advantage of high spatial utilization. The point cloud focuses on describing the shape of the external surface of the object itself and will not store useless redundant information to describe the occupation. Therefore, point clouds have become the research focus of 3D data models and are widely used in large-scale scene reconstruction, virtual reality, digital elevation model production, and other fields. Since point clouds have various characteristics, such as disorder, density inconsistency, unstructuredness, and incomplete information, point cloud classification is still complex and challenging. To realize the semantic classification of LiDAR point clouds in complex scenarios, this paper proposes the integration of normal vector features into an atrous convolution residual network. Based on the RandLA-Net network structure, the proposed network integrates the atrous convolution into the residual module to extract global and local features of the point clouds. The atrous convolution can learn more valuable point cloud feature information by expanding the receptive field. Then, the point cloud normal vector is embedded in the local feature aggregation module of the RandLA-Net network to extract local semantic aggregation features. The improved local feature aggregation module can merge the deep features of the point cloud and mine the fine-grained information of the point cloud to improve the model’s segmentation ability in complex scenes. Finally, to resolve the imbalance of the distribution of the various categories of point clouds, the original loss function is optimized by adopting a reweighted method to prevent overfitting so that the network can focus on small target categories in the training process to effectively improve the classification performance. Through the experimental analysis of a Vaihingen (Germany) urban 3D semantic dataset from the ISPRS website, it is verified that the proposed algorithm has a strong generalization ability. The overall accuracy (OA) of the proposed algorithm on the Vaihingen urban 3D semantic dataset reached 97.9%, and the average reached 96.1%. Experiments show that the proposed algorithm fully exploits the semantic features of point clouds and effectively improves the accuracy of point cloud classification.


2021 ◽  
Vol 13 (5) ◽  
pp. 859
Author(s):  
Elyta Widyaningrum ◽  
Qian Bai ◽  
Marda K. Fajari ◽  
Roderik C. Lindenbergh

Classification of aerial point clouds with high accuracy is significant for many geographical applications, but not trivial as the data are massive and unstructured. In recent years, deep learning for 3D point cloud classification has been actively developed and applied, but notably for indoor scenes. In this study, we implement the point-wise deep learning method Dynamic Graph Convolutional Neural Network (DGCNN) and extend its classification application from indoor scenes to airborne point clouds. This study proposes an approach to provide cheap training samples for point-wise deep learning using an existing 2D base map. Furthermore, essential features and spatial contexts to effectively classify airborne point clouds colored by an orthophoto are also investigated, in particularly to deal with class imbalance and relief displacement in urban areas. Two airborne point cloud datasets of different areas are used: Area-1 (city of Surabaya—Indonesia) and Area-2 (cities of Utrecht and Delft—the Netherlands). Area-1 is used to investigate different input feature combinations and loss functions. The point-wise classification for four classes achieves a remarkable result with 91.8% overall accuracy when using the full combination of spectral color and LiDAR features. For Area-2, different block size settings (30, 50, and 70 m) are investigated. It is found that using an appropriate block size of, in this case, 50 m helps to improve the classification until 93% overall accuracy but does not necessarily ensure better classification results for each class. Based on the experiments on both areas, we conclude that using DGCNN with proper settings is able to provide results close to production.


2019 ◽  
Vol 9 (5) ◽  
pp. 951 ◽  
Author(s):  
Yong Li ◽  
Guofeng Tong ◽  
Xiance Du ◽  
Xiang Yang ◽  
Jianjun Zhang ◽  
...  

3D point cloud classification has wide applications in the field of scene understanding. Point cloud classification based on points can more accurately segment the boundary region between adjacent objects. In this paper, a point cloud classification algorithm based on a single point multilevel features fusion and pyramid neighborhood optimization are proposed for a Airborne Laser Scanning (ALS) point cloud. First, the proposed algorithm determines the neighborhood region of each point, after which the features of each single point are extracted. For the characteristics of the ALS point cloud, two new feature descriptors are proposed, i.e., a normal angle distribution histogram and latitude sampling histogram. Following this, multilevel features of a single point are constructed by multi-resolution of the point cloud and multi-neighborhood spaces. Next, the features are trained by the Support Vector Machine based on a Gaussian kernel function, and the points are classified by the trained model. Finally, a classification results optimization method based on a multi-scale pyramid neighborhood constructed by a multi-resolution point cloud is used. In the experiment, the algorithm is tested by a public dataset. The experimental results show that the proposed algorithm can effectively classify large-scale ALS point clouds. Compared with the existing algorithms, the proposed algorithm has a better classification performance.


2019 ◽  
Vol 8 (5) ◽  
pp. 213 ◽  
Author(s):  
Florent Poux ◽  
Roland Billen

Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning.


2018 ◽  
Vol 10 (8) ◽  
pp. 1192 ◽  
Author(s):  
Chen-Chieh Feng ◽  
Zhou Guo

The automating classification of point clouds capturing urban scenes is critical for supporting applications that demand three-dimensional (3D) models. Achieving this goal, however, is met with challenges because of the varying densities of the point clouds and the complexity of the 3D data. In order to increase the level of automation in the point cloud classification, this study proposes a segment-based parameter learning method that incorporates a two-dimensional (2D) land cover map, in which a strategy of fusing the 2D land cover map and the 3D points is first adopted to create labelled samples, and a formalized procedure is then implemented to automatically learn the following parameters of point cloud classification: the optimal scale of the neighborhood for segmentation, optimal feature set, and the training classifier. It comprises four main steps, namely: (1) point cloud segmentation; (2) sample selection; (3) optimal feature set selection; and (4) point cloud classification. Three datasets containing the point cloud data were used in this study to validate the efficiency of the proposed method. The first two datasets cover two areas of the National University of Singapore (NUS) campus while the third dataset is a widely used benchmark point cloud dataset of Oakland, Pennsylvania. The classification parameters were learned from the first dataset consisting of a terrestrial laser-scanning data and a 2D land cover map, and were subsequently used to classify both of the NUS datasets. The evaluation of the classification results showed overall accuracies of 94.07% and 91.13%, respectively, indicating that the transition of the knowledge learned from one dataset to another was satisfactory. The classification of the Oakland dataset achieved an overall accuracy of 97.08%, which further verified the transferability of the proposed approach. An experiment of the point-based classification was also conducted on the first dataset and the result was compared to that of the segment-based classification. The evaluation revealed that the overall accuracy of the segment-based classification is indeed higher than that of the point-based classification, demonstrating the advantage of the segment-based approaches.


Author(s):  
Wenju Wang ◽  
Tao Wang ◽  
Yu Cai

AbstractClassifying 3D point clouds is an important and challenging task in computer vision. Currently, classification methods using multiple views lose characteristic or detail information during the representation or processing of views. For this reason, we propose a multi-view attention-convolution pooling network framework for 3D point cloud classification tasks. This framework uses Res2Net to extract the features from multiple 2D views. Our attention-convolution pooling method finds more useful information in the input data related to the current output, effectively solving the problem of feature information loss caused by feature representation and the detail information loss during dimensionality reduction. Finally, we obtain the probability distribution of the model to be classified using a full connection layer and the softmax function. The experimental results show that our framework achieves higher classification accuracy and better performance than other contemporary methods using the ModelNet40 dataset.


Author(s):  
D. Tosic ◽  
S. Tuttas ◽  
L. Hoegner ◽  
U. Stilla

<p><strong>Abstract.</strong> This work proposes an approach for semantic classification of an outdoor-scene point cloud acquired with a high precision Mobile Mapping System (MMS), with major goal to contribute to the automatic creation of High Definition (HD) Maps. The automatic point labeling is achieved by utilizing the combination of a feature-based approach for semantic classification of point clouds and a deep learning approach for semantic segmentation of images. Both, point cloud data, as well as the data from a multi-camera system are used for gaining spatial information in an urban scene. Two types of classification applied for this task are: 1) Feature-based approach, in which the point cloud is organized into a supervoxel structure for capturing geometric characteristics of points. Several geometric features are then extracted for appropriate representation of the local geometry, followed by removing the effect of local tendency for each supervoxel to enhance the distinction between similar structures. And lastly, the Random Forests (RF) algorithm is applied in the classification phase, for assigning labels to supervoxels and therefore to points within them. 2) The deep learning approach is employed for semantic segmentation of MMS images of the same scene. To achieve this, an implementation of Pyramid Scene Parsing Network is used. Resulting segmented images with each pixel containing a class label are then projected onto the point cloud, enabling label assignment for each point. At the end, experiment results are presented from a complex urban scene and the performance of this method is evaluated on a manually labeled dataset, for the deep learning and feature-based classification individually, as well as for the result of the labels fusion. The achieved overall accuracy with fusioned output is 0.87 on the final test set, which significantly outperforms the results of individual methods on the same point cloud. The labeled data is published on the TUM-PF Semantic-Labeling-Benchmark.</p>


2019 ◽  
Vol 11 (23) ◽  
pp. 2846 ◽  
Author(s):  
Tong ◽  
Li ◽  
Zhang ◽  
Chen ◽  
Zhang ◽  
...  

Accurate and effective classification of lidar point clouds with discriminative features expression is a challenging task for scene understanding. In order to improve the accuracy and the robustness of point cloud classification based on single point features, we propose a novel point set multi-level aggregation features extraction and fusion method based on multi-scale max pooling and latent Dirichlet allocation (LDA). To this end, in the hierarchical point set feature extraction, point sets of different levels and sizes are first adaptively generated through multi-level clustering. Then, more effective sparse representation is implemented by locality-constrained linear coding (LLC) based on single point features, which contributes to the extraction of discriminative individual point set features. Next, the local point set features are extracted by combining the max pooling method and the multi-scale pyramid structure constructed by the point’s coordinates within each point set. The global and the local features of the point sets are effectively expressed by the fusion of multi-scale max pooling features and global features constructed by the point set LLC-LDA model. The point clouds are classified by using the point set multi-level aggregation features. Our experiments on two scenes of airborne laser scanning (ALS) point clouds—a mobile laser scanning (MLS) scene point cloud and a terrestrial laser scanning (TLS) scene point cloud—demonstrate the effectiveness of the proposed point set multi-level aggregation features for point cloud classification, and the proposed method outperforms other related and compared algorithms.


Sign in / Sign up

Export Citation Format

Share Document