Human-Centered Design Principles for Actionable Learning Analytics

Author(s):  
Yannis Dimitriadis ◽  
Roberto Martínez-Maldonado ◽  
Korah Wiley
Author(s):  
Mohamed Amine Chatti ◽  
Arham Muslim ◽  
Mouadh Guesmi ◽  
Florian Richtscheid ◽  
Dawood Nasimi ◽  
...  

2014 ◽  
pp. 226-234
Author(s):  
Margarita Elkina ◽  
Albrecht Fortenbacher ◽  
Agathe Merceron

LeMo is an open source application for learning analytics, which collects data about learners' activities from different platforms. This article describes design principles of LeMo in the context of creating an efficient tool for learning analytics. Focus is on the LeMo system architecture, user path analysis employing algorithms of sequential pattern mining, and visualization of learners' activities implemented in the current version. A case stud y shows first results.


2021 ◽  
Author(s):  
Ahmed Shaikh ◽  
Abhishek Bhatia ◽  
Ghanshyam Yadav ◽  
Shashwat Hora ◽  
Chung Won ◽  
...  

UNSTRUCTURED In the wake of the COVID-19 pandemic, digital health tools have been deployed by governments around the world to advance clinical and population health objectives. Few interventions have been successful or have achieved sustainability or scale. In India, government agencies are proposing sweeping changes to India’s digital health architecture. Underpinning these initiatives is the assumption that mobile health solutions will find near universal acceptance and uptake, though the observed reticence of clinicians to use electronic health records suggests otherwise. In this practice article, we describe our experience with implementing a digital surveillance tool at a large mass gathering, attended by nearly 30 million people. Deployed with limited resources and in a dynamic chaotic setting, the adherence to human-centered design principles resulted in near universal adoption and high end-user satisfaction. Through this use case, we share generalizable lessons in the importance of contextual relevance, stakeholder participation, customizability, and rapid iteration, while designing digital health tools for individuals or populations.


10.2196/19270 ◽  
2020 ◽  
Vol 4 (12) ◽  
pp. e19270
Author(s):  
Devika Patel ◽  
Christopher Allen Berger ◽  
Alex Kityamuwesi ◽  
Joseph Ggita ◽  
Lynn Kunihira Tinka ◽  
...  

Background Digital adherence technologies have been widely promoted as a means to improve tuberculosis medication adherence. However, uptake of these technologies has been suboptimal by both patients and health workers. Not surprisingly, studies have not demonstrated significant improvement in treatment outcomes. Objective This study aimed to optimize a well-known digital adherence technology, 99DOTS, for end user needs in Uganda. We describe the findings of the ideation phase of the human-centered design methodology to adapt 99DOTS according to a set of design principles identified in the previous inspiration phase. Methods 99DOTS is a low-cost digital adherence technology wherein tuberculosis medication blister packs are encased within an envelope that reveals toll-free numbers that patients can call to report dosing. We identified 2 key areas for design and testing: (1) the envelope, including the form factor, content, and depiction of the order of pill taking; and (2) the patient call-in experience. We conducted 5 brainstorming sessions with all relevant stakeholders to generate a suite of potential prototype concepts. Senior investigators identified concepts to further develop based on feasibility and consistency with the predetermined design principles. Prototypes were revised with feedback from the entire team. The envelope and call-in experience prototypes were tested and iteratively revised through focus groups with health workers (n=52) and interviews with patients (n=7). We collected and analyzed qualitative feedback to inform each subsequent iteration. Results The 5 brainstorming sessions produced 127 unique ideas that we clustered into 6 themes: rewards, customization, education, logistics, wording and imagery, and treatment countdown. We developed 16 envelope prototypes, 12 icons, and 28 audio messages for prototype testing. In the final design, we altered the pill packaging envelope by adding a front flap to conceal the pills and reduce potential stigma associated with tuberculosis. The flap was adorned with either a blank calendar or map of Uganda. The inside cover contained a personalized message from a local health worker including contact information, pictorial pill-taking instructions, and a choice of stickers to tailor education to the patient and phase of treatment. Pill-taking order was indicated with colors, chevron arrows, and small mobile phone icons. Last, the call-in experience when patients report dosing was changed to a rotating series of audio messages centered on the themes of prevention, encouragement, and reassurance that tuberculosis is curable. Conclusions We demonstrated the use of human-centered design as a promising tool to drive the adaptation of digital adherence technologies to better address the needs and motivations of end users. The next phase of research, known as the implementation phase in the human-centered design methodology, will investigate whether the adapted 99DOTS platform results in higher levels of engagement from patients and health workers, and ultimately improves tuberculosis treatment outcomes.


2020 ◽  
Author(s):  
Devika Patel ◽  
Christopher Allen Berger ◽  
Alex Kityamuwesi ◽  
Joseph Ggita ◽  
Lynn Kunihira Tinka ◽  
...  

BACKGROUND Digital adherence technologies have been widely promoted as a means to improve tuberculosis medication adherence. However, uptake of these technologies has been suboptimal by both patients and health workers. Not surprisingly, studies have not demonstrated significant improvement in treatment outcomes. OBJECTIVE This study aimed to optimize a well-known digital adherence technology, 99DOTS, for end user needs in Uganda. We describe the findings of the ideation phase of the human-centered design methodology to adapt 99DOTS according to a set of design principles identified in the previous inspiration phase. METHODS 99DOTS is a low-cost digital adherence technology wherein tuberculosis medication blister packs are encased within an envelope that reveals toll-free numbers that patients can call to report dosing. We identified 2 key areas for design and testing: (1) the envelope, including the form factor, content, and depiction of the order of pill taking; and (2) the patient call-in experience. We conducted 5 brainstorming sessions with all relevant stakeholders to generate a suite of potential prototype concepts. Senior investigators identified concepts to further develop based on feasibility and consistency with the predetermined design principles. Prototypes were revised with feedback from the entire team. The envelope and call-in experience prototypes were tested and iteratively revised through focus groups with health workers (n=52) and interviews with patients (n=7). We collected and analyzed qualitative feedback to inform each subsequent iteration. RESULTS The 5 brainstorming sessions produced 127 unique ideas that we clustered into 6 themes: rewards, customization, education, logistics, wording and imagery, and treatment countdown. We developed 16 envelope prototypes, 12 icons, and 28 audio messages for prototype testing. In the final design, we altered the pill packaging envelope by adding a front flap to conceal the pills and reduce potential stigma associated with tuberculosis. The flap was adorned with either a blank calendar or map of Uganda. The inside cover contained a personalized message from a local health worker including contact information, pictorial pill-taking instructions, and a choice of stickers to tailor education to the patient and phase of treatment. Pill-taking order was indicated with colors, chevron arrows, and small mobile phone icons. Last, the call-in experience when patients report dosing was changed to a rotating series of audio messages centered on the themes of prevention, encouragement, and reassurance that tuberculosis is curable. CONCLUSIONS We demonstrated the use of human-centered design as a promising tool to drive the adaptation of digital adherence technologies to better address the needs and motivations of end users. The next phase of research, known as the implementation phase in the human-centered design methodology, will investigate whether the adapted 99DOTS platform results in higher levels of engagement from patients and health workers, and ultimately improves tuberculosis treatment outcomes.


10.2196/27952 ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. e27952
Author(s):  
Ahmed Shaikh ◽  
Abhishek Bhatia ◽  
Ghanshyam Yadav ◽  
Shashwat Hora ◽  
Chung Won ◽  
...  

In the wake of the COVID-19 pandemic, digital health tools have been deployed by governments around the world to advance clinical and population health objectives. Few interventions have been successful or have achieved sustainability or scale. In India, government agencies are proposing sweeping changes to India’s digital health architecture. Underpinning these initiatives is the assumption that mobile health solutions will find near universal acceptance and uptake, though the observed reticence of clinicians to use electronic health records suggests otherwise. In this practice article, we describe our experience with implementing a digital surveillance tool at a large mass gathering, attended by nearly 30 million people. Deployed with limited resources and in a dynamic chaotic setting, the adherence to human-centered design principles resulted in near universal adoption and high end-user satisfaction. Through this use case, we share generalizable lessons in the importance of contextual relevance, stakeholder participation, customizability, and rapid iteration, while designing digital health tools for individuals or populations.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Sign in / Sign up

Export Citation Format

Share Document