scholarly journals Fine-Tuning Deep Learning Architectures for Early Detection of Oral Cancer

Author(s):  
Roshan Alex Welikala ◽  
Paolo Remagnino ◽  
Jian Han Lim ◽  
Chee Seng Chan ◽  
Senthilmani Rajendran ◽  
...  
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 132677-132693 ◽  
Author(s):  
Roshan Alex Welikala ◽  
Paolo Remagnino ◽  
Jian Han Lim ◽  
Chee Seng Chan ◽  
Senthilmani Rajendran ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 5674-5677 ◽  
Author(s):  
S. L. Sanga ◽  
D. Machuve ◽  
K. Jomanga

In Tanzania, smallholder farmers contribute significantly to banana production and Kagera, Mbeya, and Arusha are among the leading regions. However, pests and diseases are a threat to food security. Early detection of banana diseases is important to identify the diseases before too much damage is done on the plants. In this paper, a tool for early detection of banana diseases by using a deep learning approach is proposed. Five deep learning architectures, namely Vgg16, Resnet18, Resnet50, Resnet152 and InceptionV3 were used to develop models for banana disease detection, achieving all high accuracies, varying from 95.41% for InceptionV3 to 99.2% for Resnet152. InceptionV3 was selected for mobile deployment because it demands much less memory. The developed tool was capable of detecting diseases with a confidence of 99% of the captured leaves from the real environment. This tool will help smallholder farmers conduct early detection of banana diseases and improve their productivity.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


Author(s):  
Mahmood Alzubaidi ◽  
Haider Dhia Zubaydi ◽  
Ali Bin-Salem ◽  
Alaa A Abd-Alrazaq ◽  
Arfan Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document