System-Wide Low-Frequency Sampling for Large HPC Systems

Author(s):  
Josef Weidendorfer ◽  
Carla Guillen ◽  
Michael Ott
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 442
Author(s):  
Marcin Jaraczewski ◽  
Ryszard Mielnik ◽  
Tomasz Gębarowski ◽  
Maciej Sułowicz

High requirements for power systems, and hence for electrical devices used in industrial processes, make it necessary to ensure adequate power quality. The main parameters of the power system include the rms-values of the current, voltage, and active and reactive power consumed by the loads. In previous articles, the authors investigated the use of low-frequency sampling to measure these parameters of the power system, showing that the method can be easily implemented in simple microcontrollers and PLCs. This article discusses the methods of measuring electrical quantities by devices with low computational efficiency and low sampling frequency up to 1 kHz. It is not obvious that the signal of 50–500 Hz can be processed using the sampling frequency of fs = 47.619 Hz because it defies the Nyquist–Shannon sampling theorem. This theorem states that a reconstruction of a sampled signal is only guaranteed possible for a bandlimit fmax < fs, where fmax is the maximum frequency of a sampled signal. Therefore, theoretically, neither 50 nor 500 Hz can be identified by such a low-frequency sampling. Although, it turns out that if we have a longer period of a stable multi-harmonic signal, which is band-limited (from the bottom and top), it allows us to map this band to the lower frequencies, thus it is possible to use the lower sampling ratio and still get enough precise information of its harmonics and rms value. The use of aliasing for measurement purposes is not often used because it is considered a harmful phenomenon. In our work, it has been used for measurement purposes with good results. The main advantage of this new method is that it achieves a balance between PLC processing power (which is moderate or low) and accuracy in calculating the most important electrical signal indicators such as power, RMS value and sinusoidal-signal distortion factor (e.g., THD). It can be achieved despite an aliasing effect that causes different frequencies to become indistinguishable. The result of the research is a proposal of error reduction in the low-frequency measurement method implemented on compact PLCs. Laboratory tests carried out on a Mitsubishi FX5 compact PLC controller confirmed the correctness of the proposed method of reducing the measurement error.


2003 ◽  
Vol 36 (24) ◽  
pp. 281-285
Author(s):  
Shiming Yu ◽  
Gang Xiao ◽  
Baoyuan Zhang

2012 ◽  
Vol 12 (15) ◽  
pp. 6757-6773 ◽  
Author(s):  
M. Saunois ◽  
L. Emmons ◽  
J.-F. Lamarque ◽  
S. Tilmes ◽  
C. Wespes ◽  
...  

Abstract. Measurements of ozone vertical profiles are valuable for the evaluation of atmospheric chemistry models and contribute to the understanding of the processes controlling the distribution of tropospheric ozone. The longest record of ozone vertical profiles is provided by ozone sondes, which have a typical frequency of 4 to 12 profiles a month. Here we quantify the uncertainty introduced by low frequency sampling in the determination of means and trends. To do this, the high frequency MOZAIC (Measurements of OZone, water vapor, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft) profiles over airports, such as Frankfurt, have been subsampled at two typical ozone sonde frequencies of 4 and 12 profiles per month. We found the lowest sampling uncertainty on seasonal means at 700 hPa over Frankfurt, with around 5% for a frequency of 12 profiles per month and 10% for a 4 profile-a-month frequency. However the uncertainty can reach up to 15 and 29% at the lowest altitude levels. As a consequence, the sampling uncertainty at the lowest frequency could be higher than the typical 10% accuracy of the ozone sondes and should be carefully considered for observation comparison and model evaluation. We found that the 95% confidence limit on the seasonal mean derived from the subsample created is similar to the sampling uncertainty and suggest to use it as an estimate of the sampling uncertainty. Similar results are found at six other Northern Hemisphere sites. We show that the sampling substantially impacts on the inter-annual variability and the trend derived over the period 1998–2008 both in magnitude and in sign throughout the troposphere. Also, a tropical case is discussed using the MOZAIC profiles taken over Windhoek, Namibia between 2005 and 2008. For this site, we found that the sampling uncertainty in the free troposphere is around 8 and 12% at 12 and 4 profiles a month respectively.


2008 ◽  
Vol 55 (12) ◽  
pp. 2840-2842 ◽  
Author(s):  
R. Wierts ◽  
R. Wierts ◽  
R. Wierts ◽  
M.J.A. Janssen ◽  
M.J.A. Janssen ◽  
...  

2011 ◽  
Vol 153 (11) ◽  
pp. 2189-2195 ◽  
Author(s):  
Edgar Santos ◽  
Jennifer Diedler ◽  
Marek Sykora ◽  
Berk Orakcioglu ◽  
Modar Kentar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document