Modeling Landscape Dynamics, Erosion Risk, and Annual Sediment Yield in Guna-tana Watershed: A Contribution for Microwatershed Level Conservation Priority Area Identification

Author(s):  
Daniel Asfaw ◽  
Getachew Workineh Gella ◽  
Mulualem Asfaw
Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Lifeng Yuan ◽  
Kenneth J. Forshay

Soil erosion and lake sediment loading are primary concerns of watershed managers around the world. In the Xinjiang River Basin of China, severe soil erosion occurs primarily during monsoon periods, resulting in sediment flow into Poyang Lake and subsequently causing lake water quality deterioration. Here, we identified high-risk soil erosion areas and conditions that drive sediment yield in a watershed system with limited available data to guide localized soil erosion control measures intended to support reduced sediment load into Poyang Lake. We used the Soil and Water Assessment Tool (SWAT) model to simulate monthly and annual sediment yield based on a calibrated SWAT streamflow model, identified where sediment originated, and determined what geographic factors drove the loading within the watershed. We applied monthly and daily streamflow discharge (1985–2009) and monthly suspended sediment load data (1985–2001) to Meigang station to conduct parameter sensitivity analysis, calibration, validation, and uncertainty analysis of the model. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and RMSE -observation’s standard deviation ratio (RSR) values of the monthly sediment load were 0.63, 0.62, 3.8%, and 0.61 during calibration, respectively. Spatially, the annual sediment yield rate ranged from 3 ton ha−1year−1 on riparian lowlands of the Xinjiang main channel to 33 ton ha−1year−1 on mountain highlands, with a basin-wide mean of 19 ton ha−1year−1. The study showed that 99.9% of the total land area suffered soil loss (greater than 5 ton ha−1year−1). More sediment originated from the southern mountain highlands than from the northern mountain highlands of the Xinjiang river channel. These results suggest that specific land use types and geographic conditions can be identified as hotspots of sediment source with relatively scarce data; in this case, orchards, barren lands, and mountain highlands with slopes greater than 25° were the primary sediment source areas. This study developed a reliable, physically-based streamflow model and illustrates critical source areas and conditions that influence sediment yield.


2013 ◽  
Vol 1 (No. 1) ◽  
pp. 23-31 ◽  
Author(s):  
Bečvář Martin

Sediment is a natural component of riverine environments and its presence in river systems is essential. However, in many ways and many places river systems and the landscape have been strongly affected by human activities which have destroyed naturally balanced sediment supply and sediment transport within catchments. As a consequence a number of severe environmental problems and failures have been identified, in particular the link between sediments and chemicals is crucial and has become a subject of major scientific interest. Sediment load and sediment concentration are therefore highly important variables that may play a key role in environment quality assessment and help to evaluate the extent of potential adverse impacts. This paper introduces a methodology to predict sediment loads and suspended sediment concentrations (SSC) in large European river basins. The methodology was developed within an MSc research study that was conducted in order to improve sediment modelling in the GREAT-ER point source pollution river modelling package. Currently GREAT-ER uses suspended sediment concentration of 15 mg/l for all rivers in Europe which is an obvious oversimplification. The basic principle of the methodology to predict sediment concentration is to estimate annual sediment load at the point of interest and the amount of water that transports it. The amount of transported material is then redistributed in that corresponding water volume (using the flow characteristic) which determines sediment concentrations. Across the continent, 44 river basins belonging to major European rivers were investigated. Suspended sediment concentration data were collected from various European basins in order to obtain observed sediment yields. These were then compared against the traditional empiric sediment yield estimators. Three good approaches for sediment yield prediction were introduced based on the comparison. The three approaches were applied to predict annual sediment yields which were consequently translated into suspended sediment concentrations. SSC were predicted at 47 locations widely distributed around Europe. The verification of the methodology was carried out using data from the Czech Republic. Observed SSC were compared against the predicted ones which validated the methodology for SSC prediction.


2018 ◽  
Vol 147 ◽  
pp. 03002
Author(s):  
Bakhtiar

This study aimed to formulate erosion index in the upper Citarum watershed with respect to the Saguling reservoir life. Soil and Water Assessment Tool model was incorporated to simulate hydrological processes in the catchment. From the calibration and validation results, the model is considerably of good performance. The simulated sediment inflow at Nanjung outlet was then extrapolated to determine the sediment inflow into the reservoir. The study revealed that the average value of sediment inflow into the reservoir is 29.24 tonnes/ha/year just below the tolerable erosion limit of 30 tonnes/ha/year assumed by Hammer (1981). It was also found that the relationship between sediment yield and sediment inflow is non linear. Erosion index is formulated as the ratio between the mean annual sediment yield generated in the watershed and the mean annual sediment yield that leads dead storage to be full in the designated life of the reservoir. Erosion index equals to 1.0 indicates that the dead storage will be full in the designated life of the reservoir. A classification of erosion index can be subsequently be made based on erosion index and reservoir life relationship.


2021 ◽  
Author(s):  
Aron Slabon ◽  
Thomas Hoffmann

<p>Suspended sediment contributes to the vast majority of the annual sediment load transported by rivers to the global oceans. At the same time, this large fraction is transported just in a fraction of time. Towards achieving sustainable sediment management and healthy fluvial systems, identifying the impact of the temporal variability on annual load estimates becomes indispensable in order to reduce uncertainties.</p><p>We aim to estimate the temporal variability of suspended sediment transport and the uncertainty of annual suspended sediment loads. Our approach is based on high-resolution time series (15 min sampling interval) of discharge and suspended sediment concentration (SSC) at four monitoring stations with different degrees of discharge variability. The quantification of the variability of discharge and sediment yield is achieved through the exceedance time. The uncertainty of the annual sediment load is estimated using a bootstrap approach. We assess the impact of the sampling interval and link the optimal sampling interval to different SSC-variability. Further, the impact of rating parameters on the uncertainty of annual loads is investigated.</p><p>Our results indicate an increase in SSC-variability with decreasing discharge, leading to a negative relationship with the contributing catchment area. The 80 % exceedance times for the annual sediment load range from less than 10 % for the river Ammer (catchment area 608 km²) between 10 – 20 % for the rivers Ilz (765 km²) and Moselle (27 088 km²) to more than 40 % for the river Rhine (109 806 km²). Simultaneously, the variability increases with a decrease in sampling frequency. Our preliminary results indicate a negative exponential relationship between exceedance time and uncertainties in annual load estimates. This relationship can be used to estimate the uncertainty of annual loads estimated based on low frequency sediment sampling at the continental to global scale.</p>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1759 ◽  
Author(s):  
Sebastián Guillén-Ludeña ◽  
Pedro Manso ◽  
Anton Schleiss

This paper presents a comprehensive methodology to model and determine the annual sediment balance of a complex system of interconnected reservoirs, based on the detailed interpretation of a multi-decadal data series of reservoir management and modelling of sediment fluxes. This methodology is applied to the reservoirs of Oberaar, Grimsel, Räterichsboden, and Trift, which are located in the Swiss Alps. Additionally, the effects of climate warming on the annual sediment yield are investigated. Modelling results show that at present, the hydropower cascade formed by Oberaar, Grimsel, and Räterichsboden retains about 92% of the annual sediment yield, of which only the finest fraction leaves the system and enters the river network. Very fine sediments (d < 10 μm) account for 28% of the total sedimentation rate and in the case of Oberaar, it can reach up to 46% of the total sedimentation rate. Under a climate warming scenario, both sediment yield and runoff are expected to increase in terms of the annual average throughout the XXIst century, which will likely lead to greater annual inputs of sediments to the reservoirs. This, in turn, will lead to a higher sedimentation rate and suspended sediment concentration in the reservoirs, unless active management of the sediment fluxes is implemented.


2001 ◽  
Vol 26 (11) ◽  
pp. 1221-1236 ◽  
Author(s):  
Anton J. J. Van Rompaey ◽  
Gert Verstraeten ◽  
Kristof Van Oost ◽  
Gerard Govers ◽  
Jean Poesen

Sign in / Sign up

Export Citation Format

Share Document