Temporal variability of annual suspended sediment yield estimates and their uncertainties

Author(s):  
Aron Slabon ◽  
Thomas Hoffmann

<p>Suspended sediment contributes to the vast majority of the annual sediment load transported by rivers to the global oceans. At the same time, this large fraction is transported just in a fraction of time. Towards achieving sustainable sediment management and healthy fluvial systems, identifying the impact of the temporal variability on annual load estimates becomes indispensable in order to reduce uncertainties.</p><p>We aim to estimate the temporal variability of suspended sediment transport and the uncertainty of annual suspended sediment loads. Our approach is based on high-resolution time series (15 min sampling interval) of discharge and suspended sediment concentration (SSC) at four monitoring stations with different degrees of discharge variability. The quantification of the variability of discharge and sediment yield is achieved through the exceedance time. The uncertainty of the annual sediment load is estimated using a bootstrap approach. We assess the impact of the sampling interval and link the optimal sampling interval to different SSC-variability. Further, the impact of rating parameters on the uncertainty of annual loads is investigated.</p><p>Our results indicate an increase in SSC-variability with decreasing discharge, leading to a negative relationship with the contributing catchment area. The 80 % exceedance times for the annual sediment load range from less than 10 % for the river Ammer (catchment area 608 km²) between 10 – 20 % for the rivers Ilz (765 km²) and Moselle (27 088 km²) to more than 40 % for the river Rhine (109 806 km²). Simultaneously, the variability increases with a decrease in sampling frequency. Our preliminary results indicate a negative exponential relationship between exceedance time and uncertainties in annual load estimates. This relationship can be used to estimate the uncertainty of annual loads estimated based on low frequency sediment sampling at the continental to global scale.</p>

2013 ◽  
Vol 1 (No. 1) ◽  
pp. 23-31 ◽  
Author(s):  
Bečvář Martin

Sediment is a natural component of riverine environments and its presence in river systems is essential. However, in many ways and many places river systems and the landscape have been strongly affected by human activities which have destroyed naturally balanced sediment supply and sediment transport within catchments. As a consequence a number of severe environmental problems and failures have been identified, in particular the link between sediments and chemicals is crucial and has become a subject of major scientific interest. Sediment load and sediment concentration are therefore highly important variables that may play a key role in environment quality assessment and help to evaluate the extent of potential adverse impacts. This paper introduces a methodology to predict sediment loads and suspended sediment concentrations (SSC) in large European river basins. The methodology was developed within an MSc research study that was conducted in order to improve sediment modelling in the GREAT-ER point source pollution river modelling package. Currently GREAT-ER uses suspended sediment concentration of 15 mg/l for all rivers in Europe which is an obvious oversimplification. The basic principle of the methodology to predict sediment concentration is to estimate annual sediment load at the point of interest and the amount of water that transports it. The amount of transported material is then redistributed in that corresponding water volume (using the flow characteristic) which determines sediment concentrations. Across the continent, 44 river basins belonging to major European rivers were investigated. Suspended sediment concentration data were collected from various European basins in order to obtain observed sediment yields. These were then compared against the traditional empiric sediment yield estimators. Three good approaches for sediment yield prediction were introduced based on the comparison. The three approaches were applied to predict annual sediment yields which were consequently translated into suspended sediment concentrations. SSC were predicted at 47 locations widely distributed around Europe. The verification of the methodology was carried out using data from the Czech Republic. Observed SSC were compared against the predicted ones which validated the methodology for SSC prediction.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Lifeng Yuan ◽  
Kenneth J. Forshay

Soil erosion and lake sediment loading are primary concerns of watershed managers around the world. In the Xinjiang River Basin of China, severe soil erosion occurs primarily during monsoon periods, resulting in sediment flow into Poyang Lake and subsequently causing lake water quality deterioration. Here, we identified high-risk soil erosion areas and conditions that drive sediment yield in a watershed system with limited available data to guide localized soil erosion control measures intended to support reduced sediment load into Poyang Lake. We used the Soil and Water Assessment Tool (SWAT) model to simulate monthly and annual sediment yield based on a calibrated SWAT streamflow model, identified where sediment originated, and determined what geographic factors drove the loading within the watershed. We applied monthly and daily streamflow discharge (1985–2009) and monthly suspended sediment load data (1985–2001) to Meigang station to conduct parameter sensitivity analysis, calibration, validation, and uncertainty analysis of the model. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and RMSE -observation’s standard deviation ratio (RSR) values of the monthly sediment load were 0.63, 0.62, 3.8%, and 0.61 during calibration, respectively. Spatially, the annual sediment yield rate ranged from 3 ton ha−1year−1 on riparian lowlands of the Xinjiang main channel to 33 ton ha−1year−1 on mountain highlands, with a basin-wide mean of 19 ton ha−1year−1. The study showed that 99.9% of the total land area suffered soil loss (greater than 5 ton ha−1year−1). More sediment originated from the southern mountain highlands than from the northern mountain highlands of the Xinjiang river channel. These results suggest that specific land use types and geographic conditions can be identified as hotspots of sediment source with relatively scarce data; in this case, orchards, barren lands, and mountain highlands with slopes greater than 25° were the primary sediment source areas. This study developed a reliable, physically-based streamflow model and illustrates critical source areas and conditions that influence sediment yield.


1999 ◽  
Vol 36 (8) ◽  
pp. 1267-1280 ◽  
Author(s):  
Michael Church ◽  
Darren Ham ◽  
Marwan Hassan ◽  
Olav Slaymaker

This report presents a set of maps of regional fluvial sediment yield in Canada, based mainly on the Water Survey of Canada archive of riverine suspended sediment observations. Regional scaling relations for the variation of suspended sediment load with drainage basin area are established to permit data to be adjusted to common areal bases for portrayal of regional variations. For most regions, the specific sediment yield increases downstream, indicating regional degradation of river valleys. In the southern prairies, however, regional aggradation is occurring, and in southern Ontario similar quantities of fluvial sediment are apparently being yielded, on average, over all scales in the landscape. A smoothed regional portrayal of the results is obtained by kriging, which also yields error estimates for locally predicted values of sediment yield. Maps are presented for the standard areas of 1 km2, 102 km2 (10 km × 10 km), and 104 km2 (102 km × 102 km).


2013 ◽  
Vol 61 (3) ◽  
pp. 232-240 ◽  
Author(s):  
Sándor Baranya ◽  
János Józsa

Abstract An estimation procedure for suspended sediment concentrations based on the intensity of backscattered sound of acoustic Doppler current profilers (ADCP) is introduced in this paper. Based on detailed moving and fixed boat ADCP measurements with concurrent sediment sampling, we have successfully calibrated the estimation method for a reach of River Danube in Hungary, characterized by significant suspended sediment transport. The effect of measurement uncertainty and various data filtering on sediment load determination is also analyzed and quantified. Some of the physical model parameters describing the propagation of sound in water are estimated based on known empirical formulas, while other parameters are derived from measured. Regression analysis is used to obtain a relationship between the intensity of backscattered sound and sediment concentrations. The empirical relationship has been then used to estimate the suspended sediment concentrations from the ADCP data collected in fixed and moving boat measurement operation mode, along verticals and path-lines, respectively. We show that while some measurement uncertainty is inherent to the acoustic Doppler principle, it is further enhanced by the complexity of the near-bottom sediment-laden flow. This uncertainty has then a significant effect on the local sediment load estimation. In turn, reasonable smoothing of raw velocity and backscatter intensity data shows insignificant impact on cross-sectional sediment load estimation.


The measurement of sediment yield is essential for getting the information of the mass balance between sea and land. It is difficult to directly measure the suspended sediment because it takes more time and money. One of the most common pollutants in the aquatic environment is suspended sediments. The sediment loads in rivers are controlled by variables like canal slope, basin volume, precipitation seasonality and tectonic activity. Water discharge and water level are the major controlling factor for estimate the sediment load in the Krishna River. Artificial neural network (ANN) is used for sediment yield modeling in the Krishna River basin, India. The comparative results show that the ANN is the easiest model for the suspended sediment yield estimates and provides a satisfactory prediction for very high, medium and low values. It is also noted that the Multiple Linear Regressions (MLR) model predicted an many number of negative sediment outputs at lower values. This is entirely unreality because the suspended sediment result can not be negative in nature. The ANN is provided better results than traditional models. The proposed ANN model will be helpful where the sediment measures are not available.


2008 ◽  
Vol 52 ◽  
pp. 553-558 ◽  
Author(s):  
Katsuhide YOKOYAMA ◽  
Shintaro FUJIZUKA ◽  
Tetsuhiro NAKAZAWA ◽  
Soutaro TAKASHIMA

2021 ◽  
Author(s):  
Tilahun Alemayehu Kasaye ◽  
Guchie Gulie ◽  
Margaret Chen ◽  
Gert Verstraeten

<p>Complex terrain tropical mountainous catchments are typically characterized by intense rainfall events, flash floods and high erosion rates with large variability over short distances. Whilst these processes are known, little quantitative information on the spatiotemporal variability in suspended sediment yield (SY) of African tropical mountain environments is available. Here, we provide such data for two catchments in the Southern Ethiopian Rift Valley characterised by annual rainfall of 700 to 1000 mm concentrated in the rainy season from April to October. In total 6 gauging stations were installed along Elgo (298 km²) and Shafe (191 km²) rivers which have their headwaters in the Gamo Highlands (max. elevation 3500 m) and run into the rift valley lakes of Chamo (1107 m) and Abaya (1169 m), respectively. For each river, a gauging station was installed where they enter the lakes as well as at the apex of extensive alluvial fans that developed in the graben lowlands, enabling to quantify the buffering capacity of the fans. For Elgo, two extra stations in the highlands were installed to monitor downstream changes in SY. At all stations, discharge (Q) was measured at 10-min resolution using a pressure diver during in 2018-2019. Additionally, 1542 samples were taken to measure the suspended sediment concentration (SSC), and these were used to establish sediment rating curves in order to calculate total suspended SY from the continuous discharge records. Observed SSC varies between 0.04 and 111.48 g/l for discharges ranging between 0.005 and 227.20 m³/s, whereas annual SY varies between 1133 and 6373 t/km²/year. Both SSC and SY values are in line with those reported for other highland rivers in Ethiopia and in line with SY values for other tropical mountain catchments in the world. A strong temporal variability in SSC and SY is observed and can be explained mainly due to changes in hillslope sediment supply throughout the seasons. Peak sediment transport is mostly concentrated in the first two months (May to June) of the rainy seasons accounting for about 60% of the total SY of the season. At the start of the rainy season, topsoil is loose because of tillage operations that prepare the soil for cultivation. Furthermore, vegetation cover is at its lowest value. Throughout the rainy season, vegetation cover increases and hence soil erosion and sediment yield declines.  Comparing the SY of the various gauging stations shows that total sediment load increases in downstream direction, up to the apex of the alluvial fans. Whereas agricultural top soil erosion is most important in the upper parts of the landscape, gully erosion and river bank erosion also contribute much sediment in downstream direction. However, total suspended SY delivered to the lake-based gauging stations is 32 to 53% lower compared to the total suspended SY measured at the gauging station situated near the apex of the alluvial fans. This implies that a significant proportion of the sediment load is buffered by the fans and points to an important dis-connectivity between eroding mountains and rift valley lakes.</p>


2018 ◽  
Vol 40 ◽  
pp. 04004
Author(s):  
Clément Misset ◽  
Alain Recking ◽  
Cédric Legout ◽  
Alain Poirel ◽  
Marine Cazilhac

Suspended sediment load represents a large part of total solid fluxes transported in most rivers. Thus, for hydropower plan management or for environmental issues, it is crucial to understand how these sediments are produced, stored and transported in a given catchment. Hysteresis loops in discharge-suspended load signals are commonly used to assess sediment sources and production processes but most of the time the shape of this relation is analyzed qualitatively on short time series or for few events. In this study we analyzed quantitatively 10 long time series of suspended sediment load of various alpine catchments. This method allows us to compare events and to assess to which extent fine sediments originate from hillslope erosion processes or from river bed remobilization. We found that watersheds with braided bed morphology are dominated by clockwise loops while those with narrower bed as step-pool morphology are dominated by counter-clockwise hysteresis or have no general trend. These results suggest that storage and remobilization of fine sediments within the bed could play a major role in suspended sediment transport in Alpine streams, especially in large braided rivers.


Sign in / Sign up

Export Citation Format

Share Document