Plastic Crystals

Author(s):  
J. Ll. Tamarit ◽  
M. Barrio ◽  
L. C. Pardo ◽  
Ph. Negrier
Keyword(s):  
RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19623-19629
Author(s):  
Vinay S. Kandagal ◽  
Jennifer M. Pringle ◽  
Maria Forsyth ◽  
Fangfang Chen

The free energy calculation shows the different free energy changes of the adsorption and absorption of gas molecules into an organic ionic plastic crystal, successfully predicting the gas selectivity of this new type of gas separation material.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2021 ◽  
Vol 23 ◽  
pp. 101023
Author(s):  
Araceli Aznar ◽  
Philippe Negrier ◽  
Antoni Planes ◽  
Lluís Mañosa ◽  
Enric Stern-Taulats ◽  
...  

2010 ◽  
Vol 63 (4) ◽  
pp. 544 ◽  
Author(s):  
Anja-Verena Mudring

Ionic liquids (ILs) have become an important class of solvents and soft materials over the past decades. Despite being salts built by discrete cations and anions, many of them are liquid at room temperature and below. They have been used in a wide variety of applications such as electrochemistry, separation science, chemical synthesis and catalysis, for breaking azeotropes, as thermal fluids, lubricants and additives, for gas storage, for cellulose processing, and photovoltaics. It has been realized that the true advantage of ILs is their modular character. Each specific cation–anion combination is characterized by a unique, characteristic set of chemical and physical properties. Although ILs have been known for roughly a century, they are still a novel class of compounds to exploit due to the vast number of possible ion combinations and one fundamental question remains still inadequately answered: why do certain salts like ILs have such a low melting point and do not crystallize readily? This Review aims to give an insight into the liquid–solid phase transition of ILs from the viewpoint of a solid-state chemist and hopes to contribute to a better understanding of this intriguing class of compounds. It will introduce the fundamental theories of liquid–solid-phase transition and crystallization from melt and solution. Aside form the formation of ideal crystals the development of solid phases with disorder and of lower order like plastic crystals and liquid crystals by ionic liquid compounds are addressed. The formation of ionic liquid glasses is discussed and finally practical techniques, strategies and methods for crystallization of ionic liquids are given.


2013 ◽  
Vol 125 (2) ◽  
pp. 76
Author(s):  
Liyu Jin ◽  
Patrick C. Howlett ◽  
Jennifer M. Pringle ◽  
Maria Forsyth
Keyword(s):  

1997 ◽  
Vol 12 (12) ◽  
pp. 3254-3259 ◽  
Author(s):  
J. Font ◽  
J. Muntasell ◽  
E. Cesari ◽  
J. Pons

Ball milling has been used as a solid-state mechanical alloying technique in two binary systems of plastic crystals: neopentylglycol/pentaglycerin (NPG/PG), showing a partial solubility in the ordered phase, and 2-amino-2-methyl-1,3-propanediol/tris(hydroxymethyl) (AMP/TRIS) whose immiscibility in this ordered solid phase is almost total. For the AMP/TRIS system the stable state at room temperature was reached by milling. Contrarily, for NPG/PG, DSC measurements reveal that an annealing period is required after milling. These results have been compared with those of the pentaglycerin/pentaerythritol (PG/PE) binary system, previously studied, whose miscibility is total at room temperature.


1991 ◽  
Vol 37 (10) ◽  
pp. 2395-2398 ◽  
Author(s):  
J. Muntasell ◽  
M. Barrio ◽  
J. Font ◽  
D. O. López ◽  
J. Li. Tamarit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document