Aerosol Characteristics and Its Impact on Regional Climate Over Northern India

Author(s):  
Pradeep Kumar ◽  
Arti Choudhary ◽  
Vineet Pratap ◽  
Pawan K. Joshi ◽  
Abhay Kumar Singh
2007 ◽  
Vol 135 (5) ◽  
pp. 2006-2015 ◽  
Author(s):  
Tomonori Sato ◽  
Fujio Kimura

Abstract The roles of the Tibetan Plateau (TP) upon the transition of precipitation in the south Asian summer monsoon are investigated using a simplified regional climate model. Before the onset of the south Asian monsoon, descending flow in the midtroposphere, which can be considered as a suppressor against precipitation, prevails over northern India as revealed by the NCEP–NCAR reanalysis data. The descending motion gradually weakens and retreats from this region before July, consistent with the northwestward migration of the monsoon rainfall. To examine a hypothesis that the dynamical and thermal effects of TP cause the midtropospheric subsidence and its seasonal variation, a series of numerical experiments are conducted using a simplified regional climate model. The mechanical effect of the TP generates robust descending flow over northern India during winter and spring when the zonal westerly flow is relatively strong, but the effect becomes weaker after April as the westerly flow tends to be weaker. The thermal effect of the TP, contrastingly, enhances the descending flow over north India in the premonsoonal season. The descending flow enhanced by the thermal effect of the TP has a seasonal cycle because the global-scale upper-level westerly changes the energy propagation of the thermal forcing response. The subsidence formed by the mechanical and thermal effects of the TP disappears over northern India after the subtropical westerly shifts north of the plateau, the seasonal change of which is in good agreement with that in the reanalysis data. The retreat of the descending flow can be regarded as the withdrawal of the premonsoon season and the commencement of the south Asian monsoon. After that, the deep convection, indicating the onset of the Indian summer monsoon, is able to develop over north India in relation to the ocean–atmosphere and land–atmosphere interaction processes. Northwest India is known to be the latest region of summer monsoon onset in south Asia. Thus, the thermal and mechanical forcing of the TP has great impact on the transition of the Indian monsoon rainfall by changing the midtropospheric circulation.


2021 ◽  
Author(s):  
Sushant Das ◽  
Erika Coppola ◽  
Abhilash Sukumara Panicker ◽  
Alok Sagar Gautam

<p>A large uncertainty exists today in quantifying the absorbing aerosol snow darkening effects, especially at the regional scale. It is considered as one of the main factors contributing to snow melting and glacier retreat over the Himalayas-Tibetan Plateau (HTP). Using International Centre for Theoretical Physics (ICTP)’s regional climate model - RegCM4 coupled with SNow, ICe and Aerosol Radiation (SNICAR) embedded within Community Land Model (CLM4.5), we examine the possible changes induced by aerosol deposition over the HTP and its dynamical impacts over northern India during the pre-monsoon season, which is critical for the inception and development of the monsoon. Sensitivity experiments without (DRE) and with aerosol snow darkening effects (SDDRE) were carried out over the South Asia - Coordinated Regional Climate Downscaling Experiment (CORDEX) domain for the period 2005-2010. It is found that there is a significant reduction of snow fraction by 10 to 25 % and an increase in surface temperatures (> 4° C) in SDDRE, which improves the model performance when comparing against observations. This response is dominated by a larger portion of dust deposition compared to black carbon. The associated increase in the surface and tropospheric temperature over HTP draws in dry air from central and west Asia towards northern India leading to a decrease in the precipitation in SDDRE.  The increase in the northwesterly winds also modulates the dust cycle by enhancing dust emissions over the Thar Desert as well as the columnar burden and depositional fluxes over northern India. As a result of the decrease in precipitation, surface temperature increases and generates a low-pressure system over northern India, which further strengthens the dust transport and partially contributes to the occurrence of dust storms. We also find that the snow darkening effect induces an earlier monsoon onset due to larger temperature gradients initiated over the HTP. Some analysis of precipitation and temperature extremes as well as limitations will be presented. Our study provides evidence that the aerosol snow darkening effects could have substantial impacts over HTP as well as over northern India through feedbacks and hence needs to be considered in climate simulations.</p>


2013 ◽  
Vol 57 (3) ◽  
pp. 173-186 ◽  
Author(s):  
X Wang ◽  
M Yang ◽  
G Wan ◽  
X Chen ◽  
G Pang

2015 ◽  
Vol 64 (2) ◽  
pp. 123-140 ◽  
Author(s):  
P Zanis ◽  
E Katragkou ◽  
C Ntogras ◽  
G Marougianni ◽  
A Tsikerdekis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document