Fermion Mass and Chirality Oscillation

Author(s):  
Fumihiko Suekane
Keyword(s):  
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Petr Beneš ◽  
Jiří Hošek ◽  
Adam Smetana

Abstract Higgs sector of the Standard model (SM) is replaced by quantum flavor dynamics (QFD), the gauged flavor SU(3)f symmetry with scale Λ. Anomaly freedom requires addition of three νR. The approximate QFD Schwinger-Dyson equation for the Euclidean infrared fermion self-energies Σf(p2) has the spontaneous-chiral-symmetry-breaking solutions ideal for seesaw: (1) Σf(p2) = $$ {M}_{fR}^2/p $$ M fR 2 / p where three Majorana masses MfR of νfR are of order Λ. (2) Σf(p2) = $$ {m}_f^2/p $$ m f 2 / p where three Dirac masses mf = m(0)1 + m(3)λ3 + m(8)λ8 of SM fermions are exponentially suppressed w.r.t. Λ, and degenerate for all SM fermions in f. (1) MfR break SU(3)f symmetry completely; m(3), m(8) superimpose the tiny breaking to U(1) × U(1). All flavor gluons thus acquire self-consistently the masses ∼ Λ. (2) All mf break the electroweak SU(2)L × U(1)Y to U(1)em. Symmetry partners of the composite Nambu-Goldstone bosons are the genuine Higgs particles: (1) three νR-composed Higgses χi with masses ∼ Λ. (2) Two new SM-fermion-composed Higgses h3, h8 with masses ∼ m(3), m(8), respectively. (3) The SM-like SM-fermion-composed Higgs h with mass ∼ m(0), the effective Fermi scale. Σf(p2)-dependent vertices in the electroweak Ward-Takahashi identities imply: the axial-vector ones give rise to the W and Z masses at Fermi scale. The polar-vector ones give rise to the fermion mass splitting in f. At the present exploratory stage the splitting comes out unrealistic.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.


1980 ◽  
Vol 21 (4) ◽  
pp. 1113-1115 ◽  
Author(s):  
V. Elias

1993 ◽  
Vol 08 (04) ◽  
pp. 705-721
Author(s):  
M. RAVENDRANADHAN ◽  
M. SABIR

Ground state charge of some fermion soliton system without C-invariance is calculated in 1+1 and 3+1 dimensions by a combination of adiabatic method and spectral flow analysis. Induced charge is calculated by evolving adiabatically the fields from a vacuum having a background field which has a zero energy state and spectral symmetry. The spectral flow is calculated by an analysis of the bound state spectrum. In 1+1 dimension our calculations are in agreement with the results already found in the literature. In 3+1 dimension we study the interaction of fermions with monopoles and dyons. In the case of monopoles, even though there is spectral asymmetry, ground state charge is found to be ±1/2. It is shown that ground state charge gets contribution only from the lowest angular momentum states and is discontinuous at the fermion mass.


2001 ◽  
Vol 615 (1-3) ◽  
pp. 358-384 ◽  
Author(s):  
R.G. Roberts ◽  
A. Romanino ◽  
G.G. Ross ◽  
L. Velasco-Sevilla
Keyword(s):  

1987 ◽  
Vol 59 (21) ◽  
pp. 2405-2407 ◽  
Author(s):  
T. Appelquist ◽  
M. S. Chanowitz

1984 ◽  
Vol 239 (2) ◽  
pp. 508-518 ◽  
Author(s):  
Dieter Lüst
Keyword(s):  

2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Dilip Kumar Ghosh ◽  
R. S. Hundi

2010 ◽  
Vol 25 (32) ◽  
pp. 5897-5911 ◽  
Author(s):  
JOSÉ BORDES ◽  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

It is shown that in the scheme with a rotating fermion mass matrix (i.e. one with a scale-dependent orientation in generation space) suggested earlier for explaining fermion mixing and mass hierarchy, the theta angle term in the QCD action of topological origin can be eliminated by chiral transformations, while giving still nonzero masses to all quarks. Instead, the effects of such transformations get transmitted by the rotation to the CKM matrix as the KM phase giving, for θ of order unity, a Jarlskog invariant typically of order 10-5, as experimentally observed. Strong and weak CP violations appear then as just two facets of the same phenomenon.


1999 ◽  
Vol 14 (18) ◽  
pp. 2921-2947 ◽  
Author(s):  
DOMINIC LEE ◽  
GEORGIOS METIKAS

We consider various ways of treating the infrared divergence which appears in the dynamically generated fermion mass, when the transverse part of the photon propagator in N flavour QED 3 at finite temperature is included in the Matsubara formalism. This divergence is likely to be an artifact of taking into account only the leading order term in the [Formula: see text] expansion when we calculate the photon propagator and is handled here phenomenologically by means of an infrared cutoff. Inserting both the longitudinal and the transverse part of the photon propagator in the Schwinger–Dyson equation, we find the dependence of the dynamically generated fermion mass on the temperature and the cutoff parameters. It turns out that consistency with certain statistical physics arguments imposes conditions on the cutoff parameters. For parameters in the allowed range of values we find that the ratio r=2* Mass (T=0)/critical temperature is approximately 6, consistent with previous calculations which neglected the transverse photon contribution.


Sign in / Sign up

Export Citation Format

Share Document