Simultaneous Immunoblotting Analysis with Activity Gel Electrophoresis

Author(s):  
Biji T. Kurien
2002 ◽  
Vol 76 (3) ◽  
pp. 217-223 ◽  
Author(s):  
J. Martinez ◽  
J. Perez-Serrano ◽  
W.E. Bernadina ◽  
F. Rodriguez-Caabeiro

AbstractStress response and phosphorylation of heat shock proteins (HSPs) 60, 70 and 90 were studied in Trichinella nativa, T. nelsoni, T. pseudospiralis and T. spiralis larvae at 30-min intervals following exposure to 20, 100 and 200 mM H2O2. There was a time- and dose-dependent differential survival for the infective stage larvae (L1) of these four Trichinella species. Immunoblotting analysis revealed that constitutive Hsp60 and Hsp70, but not Hsp90, from test Trichinella species are constitutively phosphorylated on serine/threonine residues as they converted to forms with increased sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) mobility by treatment with alkaline phosphatase. After exposure to H2O2, while there was a time-related occurrence of the three HSPs with decreased SDS–PAGE mobility, these HSPs were insensitive to alkaline phosphatase except in the case of exposure to 20 mM H2O2 for Hsp60 from all Trichinella species and Hsp70 from T. spiralis and T. nelsoni. The synthesis of HSPs forms with decreased SDS–PAGE mobility is a susceptibility signal because the lower concentration of peroxide (20 mM) did not cause a decrease on HSPs SDS–PAGE mobility in T. spiralis and T. nelsoni, the two more resistant selected Trichinella species.


Author(s):  
G. L. Brown

Bismuth (Bi) stains nucleoproteins (NPs) by interacting with available amino and primary phosphate groups. These two staining mechanisms are distinguishable by glutaraldehyde crosslinking (Fig. 1,2).Isolated mouse liver nuclei, extracted with salt and acid solutions, fixed in either formaldehyde (form.) or gl utaraldehyde (glut.) and stained with Bi, were viewed to determine the effect of the extractions on Bi stainina. Solubilized NPs were analyzed by SDS-polyacrylamide gel electrophoresis.Extraction with 0.14 M salt does not change the Bi staining characteristics (Fig. 3). 0.34 M salt reduces nucleolar (Nu) staining but has no effect on interchromatinic (IC) staining (Fig. 4). Proteins responsible for Nu and glut.- insensitive IC staining are removed when nuclei are extracted with 0.6 M salt (Fig. 5, 6). Low salt and acid extraction prevents Bi-Nu staining but has no effect on IC staining (Fig. 7). When nuclei are extracted with 0.6 M salt followed by low salt and acid, all Bi-staining components are removed (Fig. 8).


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


Sign in / Sign up

Export Citation Format

Share Document