scholarly journals Generalized Bounded Linear Logic and its Categorical Semantics

Author(s):  
Yōji Fukihara ◽  
Shin-ya Katsumata

AbstractWe introduce a generalization of Girard et al.’s called (and its affine variant ). It is designed to capture the core mechanism of dependency in , while it is also able to separate complexity aspects of . The main feature of is to adopt a multi-object pseudo-semiring as a grading system of the !-modality. We analyze the complexity of cut-elimination in , and give a translation from with constraints to with positivity axiom. We then introduce indexed linear exponential comonads (ILEC for short) as a categorical structure for interpreting the $${!}$$ ! -modality of . We give an elementary example of ILEC using folding product, and a technique to modify ILECs with symmetric monoidal comonads. We then consider a semantics of using the folding product on the category of assemblies of a BCI-algebra, and relate the semantics with the realizability category studied by Hofmann, Scott and Dal Lago.

2017 ◽  
Vol 28 (10) ◽  
pp. 1639-1694
Author(s):  
MASAHIRO HAMANO ◽  
PHILIP SCOTT

We present Geometry of Interaction (GoI) models for Multiplicative Polarized Linear Logic, MLLP, which is the multiplicative fragment of Olivier Laurent's Polarized Linear Logic. This is done by uniformly adding multi-points to various categorical models of GoI. Multi-points are shown to play an essential role in semantically characterizing the dynamics of proof networks in polarized proof theory. For example, they permit us to characterize the key feature of polarization, focusing, as well as being fundamental to our construction of concrete polarized GoI models.Our approach to polarized GoI involves following two independent studies, based on different categorical perspectives of GoI: (i)Inspired by the work of Abramsky, Haghverdi and Scott, a polarized GoI situation is defined in which multi-points are added to a traced monoidal category equipped with a reflexive object U. Using this framework, categorical versions of Girard's execution formula are defined, as well as the GoI interpretation of MLLP proofs. Running the execution formula is shown to characterize the focusing property (and thus polarities) as well as the dynamics of cut elimination.(ii)The Int construction of Joyal–Street–Verity is another fundamental categorical structure for modelling GoI. Here, we investigate it in a multi-pointed setting. Our presentation yields a compact version of Hamano–Scott's polarized categories, and thus denotational models of MLLP. These arise from a contravariant duality between monoidal categories of positive and negative objects, along with an appropriate bimodule structure (representing ‘non-focused proofs’) between them.Finally, as a special case of (ii) above, a compact model of MLLP is also presented based on Rel (the category of sets and relations) equipped with multi-points.


2016 ◽  
Vol 28 (4) ◽  
pp. 472-507 ◽  
Author(s):  
MARIE KERJEAN ◽  
CHRISTINE TASSON

In this paper, we describe a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted as bounded linear functions. So as to interpret non-linear proofs of Linear Logic, we use a notion of power series between Mackey-complete spaces, generalizing entire functions in $\mathbb{C}$. Finally, we get a quantitative model of Intuitionist Differential Linear Logic, with usual syntactic differentiation and where interpretations of proofs decompose as a Taylor expansion.


1990 ◽  
pp. 195-209 ◽  
Author(s):  
Jean-Yves Girard ◽  
Andre Scedrov ◽  
Philip J. Scott

10.29007/ntkm ◽  
2018 ◽  
Author(s):  
Frank Pfenning

Epistemic logic analyzes reasoning governing localized knowledge, and is thus fundamental to multi- agent systems. Linear logic treats hypotheses as consumable resources, allowing us to model evolution of state. Combining principles from these two separate traditions into a single coherent logic allows us to represent localized consumable resources and their flow in a distributed system. The slogan “possession is linear knowledge” summarizes the underlying idea. We walk through the design of a linear epistemic logic and discuss its basic metatheoretic properties such as cut elimination. We illustrate its expressive power with several examples drawn from an ongoing effort to design and implement a linear epistemic logic programming language for multi-agent distributed systems.


2005 ◽  
Vol 13 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Maria Emilia Maietti ◽  
Paola Maneggia ◽  
Valeria de Paiva ◽  
Eike Ritter

2002 ◽  
Vol 12 (4) ◽  
pp. 513-539 ◽  
Author(s):  
R. BLUTE ◽  
J. R. B. COCKETT ◽  
R. A. G. SEELY

This paper describes a family of logics whose categorical semantics is based on functors with structure rather than on categories with structure. This allows the consideration of logics that contain possibly distinct logical subsystems whose interactions are mediated by functorial mappings. For example, within one unified framework, we shall be able to handle logics as diverse as modal logic, ordinary linear logic, and the ‘noncommutative logic’ of Abrusci and Ruet, a variant of linear logic that has both commutative and noncommutative connectives.Although this paper will not consider in depth the categorical basis of this approach to logic, preferring instead to emphasise the syntactic novelties that it generates in the logic, we shall focus on the particular case when the logics are based on a linear functor, in order to give a definite presentation of these ideas. However, it will be clear that this approach to logic has considerable generality.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Robin Cockett ◽  
Cole Comfort ◽  
Priyaa Srinivasan

Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.


2020 ◽  
Vol 30 (1) ◽  
pp. 239-256 ◽  
Author(s):  
Max Kanovich ◽  
Stepan Kuznetsov ◽  
Andre Scedrov

Abstract The Lambek calculus can be considered as a version of non-commutative intuitionistic linear logic. One of the interesting features of the Lambek calculus is the so-called ‘Lambek’s restriction’, i.e. the antecedent of any provable sequent should be non-empty. In this paper, we discuss ways of extending the Lambek calculus with the linear logic exponential modality while keeping Lambek’s restriction. Interestingly enough, we show that for any system equipped with a reasonable exponential modality the following holds: if the system enjoys cut elimination and substitution to the full extent, then the system necessarily violates Lambek’s restriction. Nevertheless, we show that two of the three conditions can be implemented. Namely, we design a system with Lambek’s restriction and cut elimination and another system with Lambek’s restriction and substitution. For both calculi, we prove that they are undecidable, even if we take only one of the two divisions provided by the Lambek calculus. The system with cut elimination and substitution and without Lambek’s restriction is folklore and known to be undecidable.


Sign in / Sign up

Export Citation Format

Share Document