scholarly journals LGL-GNN: Learning Global and Local Information for Graph Neural Networks

Author(s):  
Huan Li ◽  
Boyuan Wang ◽  
Lixin Cui ◽  
Lu Bai ◽  
Edwin R. Hancock
2021 ◽  
Vol 11 (5) ◽  
pp. 2161
Author(s):  
Tak-Sung Heo ◽  
Jong-Dae Kim ◽  
Chan-Young Park ◽  
Yu-Seop Kim

Semantic similarity evaluation is used in various fields such as question-and-answering and plagiarism testing, and many studies have been conducted into this problem. In previous studies using neural networks to evaluate semantic similarity, similarity has been measured using global information of sentence pairs. However, since sentences do not only have one meaning but a variety of meanings, using only global information can have a negative effect on performance improvement. Therefore, in this study, we propose a model that uses global information and local information simultaneously to evaluate the semantic similarity of sentence pairs. The proposed model can adjust whether to focus more on global information or local information through a weight parameter. As a result of the experiment, the proposed model can show that the accuracy is higher than existing models that use only global information.


Author(s):  
Zemin Liu ◽  
Yuan Fang ◽  
Chenghao Liu ◽  
Steven C.H. Hoi

Graph neural networks (GNNs) emerge as a powerful family of representation learning models on graphs. To derive node representations, they utilize a global model that recursively aggregates information from the neighboring nodes. However, different nodes reside at different parts of the graph in different local contexts, making their distributions vary across the graph. Ideally, how a node receives its neighborhood information should be a function of its local context, to diverge from the global GNN model shared by all nodes. To utilize node locality without overfitting, we propose a node-wise localization of GNNs by accounting for both global and local aspects of the graph. Globally, all nodes on the graph depend on an underlying global GNN to encode the general patterns across the graph; locally, each node is localized into a unique model as a function of the global model and its local context. Finally, we conduct extensive experiments on four benchmark graphs, and consistently obtain promising performance surpassing the state-of-the-art GNNs.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document