A New Test Method for Sheet Metal Deformation Subject to Tension Under Cyclic Bending and Compression (TCBC)

Author(s):  
H. Long ◽  
S. Ai ◽  
F. Tian ◽  
B. Lu ◽  
J. Chen ◽  
...  
2010 ◽  
Vol 154-155 ◽  
pp. 166-170
Author(s):  
Gai Pin Cai ◽  
Ning Yuan Zhu ◽  
Na Wen

As a non-homogenous force stresses during incremental forming, sheet metal easily tended to instability, and some defects, such as deposition, wrinkle and fracture, would appear. If the vibration technique was combined the incremental forming process, its deformation mechanism would be different from that of the old process, and sheet metal deformation quality was also risen. Then some mechanical equations were built by force analyzed on element in local contact zone of die head forcing down. According to reasonable hypothesis and simplified, the equations were solved. Some stress-time curves of the element were obtained by given process parameters, vibrational parameters and time parameters. It is shown from analysis that stress variety of the element is closely related to amplitude, frequency and forming angle, effect of sheet metal vibration incremental forming with high frequency vibration is more superior than that of with low frequency vibration; only when vibrational parameters are reasonably matching technical parameters, the effective vibration incremental forming can be obtained.


2011 ◽  
Vol 211 (4) ◽  
pp. 695-707 ◽  
Author(s):  
Kyung Seok Oh ◽  
Kwang Hwan Oh ◽  
Jun Ho Jang ◽  
Dong Jin Kim ◽  
Kyung Seop Han
Keyword(s):  

2021 ◽  
Author(s):  
Alina Biallas ◽  
Marion Merklein

Steel fibers as concrete reinforcement improve the building material’s mechanical properties and enlarges its field of application. The production of steel fibers by the process chain notch rolling and cyclic bending promises energetic improvement compared to the conventional manufacturing process wire drawing. The innovative procedure is not yet researched extensively and modelling of the material behavior brings with it many challenges. Different stress states of both process steps require various material models and material failure must be considered. The study brings an appropriate modelling of the test sheet metal DP600 with a thickness of t0=0.8 mm for the second process step into focus. The wire strip’s notches are exposed to a cyclic tension-compression load for which high strength steel exhibits early yielding and a distinct transient region of the stress-strain curve after load reversal. For this reason, the isotropic-kinematic hardening model by Chaboche and Rousselier determined in tension-compression tests is validated by cyclic bending tests. For considering crack initiation, an appropriate ductile damage model for depicting material fatigue is identified. To allow practical realization of the process and validation of the material model, an experimental test method for manufacturing wire strip samples by notch stamping is introduced.


Author(s):  
Max Böhnke ◽  
Moritz Rossel ◽  
Christian R. Bielak ◽  
Mathias Bobbert ◽  
Gerson Meschut

AbstractIn order to reduce fuel consumption and thus pollutant emissions, the automotive industry is increasingly developing lightweight construction concepts that are accompanied by an increasing usage of aluminum materials. Due to poor weldability of aluminum in combination with other materials, mechanical joining methods such as clinching were developed and established in series production. In order to predict the relevant characteristics of clinched joints and to ensure the reliability of the process, it is simulated numerically during product development processes. In this regard, the predictive accuracy of the simulated process highly depends on the implemented friction model. In particular, the frictional behavior between the sheet metals as well as between the sheet metal and clinching tools has a significant impact on the geometrical formation of the clinched joint. No testing methods exist that can sufficiently investigate the frictional behavior in sheet materials, especially under high interface pressures, different relative velocities, and long friction paths, while allowing a decoupled consideration of the test parameters. This paper describes the development of further testing concepts based on a proven tribo-torsion test method for determining friction coefficients between sheet metal materials for the simulation of clinching processes. For this purpose, the correlation of interface pressure and the relative velocity between aluminum and steel sheet material in clinching processes is investigated using numerical simulation. Based on these findings, the developed concepts focus on determining friction coefficients at interface pressures of the above materials, yield stress, as well as the reproduction of the occurring friction conditions between sheet metal materials and tool surfaces in clinching processes using tool substitutes. Furthermore, wear investigations between sheet metal material and tool surface were carried out in the friction tests with subsequent EDX analyses of the frictioned tool surfaces. The developed method also allows an optical deformation measurement of the sheet metal material specimen by means of digital image correlation (DIC). Based on a methodological approach, the test setups and the test systems used are explained, and the functionality of the concepts is proven by experimental tests using different sheet metal materials.


Sign in / Sign up

Export Citation Format

Share Document