scholarly journals Evaluation of material behavior of wire strips under cyclic bending load and preparation of an experimental test method

2021 ◽  
Author(s):  
Alina Biallas ◽  
Marion Merklein

Steel fibers as concrete reinforcement improve the building material’s mechanical properties and enlarges its field of application. The production of steel fibers by the process chain notch rolling and cyclic bending promises energetic improvement compared to the conventional manufacturing process wire drawing. The innovative procedure is not yet researched extensively and modelling of the material behavior brings with it many challenges. Different stress states of both process steps require various material models and material failure must be considered. The study brings an appropriate modelling of the test sheet metal DP600 with a thickness of t0=0.8 mm for the second process step into focus. The wire strip’s notches are exposed to a cyclic tension-compression load for which high strength steel exhibits early yielding and a distinct transient region of the stress-strain curve after load reversal. For this reason, the isotropic-kinematic hardening model by Chaboche and Rousselier determined in tension-compression tests is validated by cyclic bending tests. For considering crack initiation, an appropriate ductile damage model for depicting material fatigue is identified. To allow practical realization of the process and validation of the material model, an experimental test method for manufacturing wire strip samples by notch stamping is introduced.

Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


2019 ◽  
Vol 9 (23) ◽  
pp. 5025
Author(s):  
Yang ◽  
Dai ◽  
He

The ratcheting behavior of a steel pipe with assembly parts was examined under internal pressure and a cyclic bending load, which has not been seen in previous research. An experimentally validated and three dimensional (3D) elastic-plastic finite element model (FEM)—with a nonlinear isotropic/kinematic hardening model—was used for the pipe’s ratcheting simulation and considered the assembly contact effects outlined in this paper. A comparison of the ratcheting response of pipes with and without assembly parts showed that assembly contact between the sleeve and pipe suppressed the ratcheting response by changing its trend. In this work, the assembly contact effect on the ratcheting response of the pipe with assembly parts is discussed. Both the assembly contact and bending moment were found to control the ratcheting response, and the valley and peak values of the hoop ratcheting strain were the transition points of the two control modes. Finally, while the clearance between the sleeve and the pipe had an effect on the ratcheting response when it was not large, it had no effect when it reached a certain value.


2020 ◽  
Vol 44 (2) ◽  
pp. 57-61
Author(s):  
Marta Wójcik ◽  
Andrzej Skrzat

AbstractThis article presents the application of Chaboche nonlinear kinematic hardening model in simulations of uniaxial ratcheting. First, the symmetrical strain-controlled cyclic tension/compression tests for PA6 aluminum samples were done. Using the experimental stress–strain curve, initial material hardening parameters were determined by the ABAQUS software. The experimental curve was compared with the numerical one. For better fitting of both curves, the optimization procedure based on the least-square method was applied. Using the determined hardening parameters, numerical simulations of the ratcheting were done by the finite element analysis software. Numerical results were then compared with the experimental data obtained in the stress-controlled cyclic loading test.


2015 ◽  
Vol 639 ◽  
pp. 385-392 ◽  
Author(s):  
Martin Rosenschon ◽  
Sebastian Suttner ◽  
Marion Merklein

The recent development of new lightweight sheet metal materials, like advanced high-strength steels or aluminium alloys, in combination with an increasing component complexity provides new challenges to the numerical material modelling in the FEM based process design. An auspicious approach to improve the quality of the numerical results – most notably in springback analysis – is the modelling of the so called Bauschinger effect achieved through implementation of kinematic hardening models. Within this paper the influence of the stress state and the level of pre-strain on the numerical simulation result of the advanced high strength steel DP-K45/78+Z will be analysed. For this purpose, a parameter identification of the kinematic hardening law according to Chaboche and Rousselier is performed at different pre-strains on the basis of experimental data from tension-compression tests as well as cyclic shear tests. Finally, the identified parameters are validated in a comparison between numerical and experimental results of a cyclic bending test.


Author(s):  
Jan Ferino ◽  
Antonio Lucci ◽  
Giuseppe Demofonti

Temporary ground deformations produced by strong seismic activity can result in severe cyclic loading applied to piping, fittings and components such as flanges, elbows, tee joints etc. The integrity of the piping system in such condition is of critical importance for the safety of petro-chemical plants or refineries. Among various reasons of failures under earthquakes, the accumulation of plastic strains due to cyclic bending loading of pressurized piping sections containing bolted flanged joints, have to be carefully considered. This paper reports the results of the experimental full scale tests performed within the RFCS INDUSE Project [1] on PN40 and PN63 piping sections containing bolted flanged joints subjected to monotonic and cyclic bending load, in presence of internal pressure. On the basis of the experimental results, a FE model adopting Lemaitre-Chaboche nonlinear kinematic hardening rule for the pipe material has been developed, allowing to extend the results of the tests by performing a study on the main parameters affecting resistance of the joint.


2010 ◽  
Vol 667-669 ◽  
pp. 955-960 ◽  
Author(s):  
Bert Verlinden ◽  
En Ze Chen ◽  
Laurent Duchêne ◽  
Anne Marie Habraken

In most papers dealing with tension and/or compression tests, the conventional yield stress is determined either by an offset method (usually 0.2% strain) or by back extrapolation from the stress-strain curve. In our experiments on ECAP’ed Aluminium a transient hardening saturation (THS) is always observed during the compression tests, but not during the tensile tests. This THS occurs at a significantly lower stress than the conventional yield stress. The aim of the present paper is to determine which the “real” start of yielding is. Two different experimental approaches have been adopted, confirming that the THS stage is exactly the yielding stage. This is not unimportant because it increases the tension-compression asymmetry and hence the back-stress and kinematic hardening. The reason for this different behaviour between tension and compression can be ascribed to a different change in strain path with respect to the ECAP deformation.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


2011 ◽  
Vol 465 ◽  
pp. 129-132
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

Particulate composites with crosslinked polymer matrix and solid fillers are one of important classes of materials such as construction materials, high-performance engineering materials, sealants, protective organic coatings, dental materials, or solid explosives. The main focus of a present paper is an estimation of the macroscopic Young’s modulus and stress-strain behavior of a particulate composite with polymer matrix. The particulate composite with a crosslinked polymer matrix in a rubbery state filled by an alumina-based mineral filler is investigated by means of the finite element method. A hyperelastic material behavior of the matrix was modeled by the Mooney-Rivlin material model. Numerical models on the base of unit cell were developed. The numerical results obtained were compared with experimental stress-strain curve and value of initial Young’s modulus. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a crosslinked polymer matrix.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2350 ◽  
Author(s):  
Jun Peng ◽  
Sheng-Qi Yang

High temperature treatment has a significant influence on the mechanical behavior and the associated microcracking characteristic of rocks. A good understanding of the thermal damage effects on rock behavior is helpful for design and stability evaluation of engineering structures in the geothermal field. This paper studies the mechanical behavior and the acoustic emission (AE) characteristic of three typical rocks (i.e., sedimentary, metamorphic, and igneous), with an emphasis on how the difference in rock type (i.e., porosity and mineralogical composition) affects the rock behavior in response to thermal damage. Compression tests are carried out on rock specimens which are thermally damaged and AE monitoring is conducted during the compression tests. The mechanical properties including P-wave velocity, compressive strength, and Young’s modulus for the three rocks are found to generally show a decreasing trend as the temperature applied to the rock increases. However, these mechanical properties for quartz sandstone first increase to a certain extent and then decrease as the treatment temperature increases, which is mainly attributed to the high porosity of quartz sandstone. The results obtained from stress–strain curve, failure mode, and AE characteristic also show that the failure of quartz-rich rock (i.e., quartz sandstone and granite) is more brittle when compared with that of calcite-rich rock (i.e., marble). However, the ductility is enhanced to some extent as the treatment temperature increases for all the three examined rocks. Due to high brittleness of quartz sandstone and granite, more AE activities can be detected during loading and the recorded AE activities mostly accumulate when the stress approaches the peak strength, which is quite different from the results of marble.


1991 ◽  
Vol 113 (4) ◽  
pp. 404-410 ◽  
Author(s):  
W. R. Chen ◽  
L. M. Keer

An incremental plasticity model is proposed based on the von-Mises yield condition, associated flow rule, and nonlinear kinematic hardening rule. In the present model, fatigue life prediction requires only the uniaxial cycle stress-strain curve and the uniaxial fatigue test results on smooth specimens. Experimental data of 304 stainless steel and 1045 carbon steel were used to validate this analytical model. It is shown that a reasonable description of steady-state hysteresis stress-strain loops and prediction of fatigue lives under various combined axial-torsional loadings are given by this model


Sign in / Sign up

Export Citation Format

Share Document