Strength and Microstructure Development of Fly Ash Geopolymer Binders Using Waste Glass Powder

Author(s):  
Md. Nabi Newaz Khan ◽  
Jhutan Chandra Kuri ◽  
Prabir Kumar Sarker
2021 ◽  
Vol 11 (1) ◽  
pp. 396
Author(s):  
Robert Jurczak ◽  
Filip Szmatuła

This article presents the results of research on the possibility of replacing fly ash with recycled waste glass in lower-strength concrete mixes. The results of testing concrete mixes containing either waste-glass powder or fly ash are presented in the article. A standard C12/15 concrete mix was chosen for the tests based on its common use for producing concrete for footings to support road kerbs and gutters along national roads in the Polish province of West Pomerania. In the first step of the testing procedure, reference mixes were prepared with 22.5% and 45% fly ash in relation to the content of cement. In the next step, mixes were prepared based on the same specification, except that glass powder was added in place of fly ash. The samples were then tested to determine the influence of waste-glass powder on the main properties of the prepared concrete mixes and on the performance of the concrete when hardened. All the samples were tested for 7 and 28-day compressive strength, water absorption, and freeze-thaw resistance in water. Next, the performance parameters of the samples containing waste-glass powder were compared to the reference mixes containing an equal amount of fly ash. The test results and their analysis allow us to conclude that mixes containing glass powder are not only equal to mixes containing fly ash, but even outperform them by a wide margin in terms of durability.


2018 ◽  
Vol 172 ◽  
pp. 2892-2898 ◽  
Author(s):  
Tawatchai Tho-In ◽  
Vanchai Sata ◽  
Kornkanok Boonserm ◽  
Prinya Chindaprasirt

2018 ◽  
Vol 4 (5) ◽  
pp. 1019 ◽  
Author(s):  
Basheer Mohammed Salem Al-Ahdal ◽  
Li Bi Xiong ◽  
Rana Faisal Tufail

This paper for the first time investigates the workability, compressive and tensile strength of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder. Seventy six cube specimen (150  150  150 mm were cast with different composition of Fly Ash, Rice Husk Ash ,Waste Glass Powder and steel fibers. The cubes were tested for axial compression and tensile tests. The research also investigated the effect of curing regime on the compressive and tensile strength of concrete cube specimen. The results revealed that the addition of 15 % Rice Husk Ash and 39% Fly Ash increased the workability of 25 % as compared to the controlled concrete. The sample containing 10 % Rice Husk Ash, 10% Waste Glass Powder and 39% micro silica produced worst workability as it decreased the workability up to 5 % of controlled concrete. The results for axial compressive strength shows that the addition of 15% Rice Husk Ash (RHA) and 39% of Fly Ash (FA) in concrete leads to the improvement of compressive strength by 14%. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to the improvement by 53.9 for compressive. The replacement  of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP ), 39 % of micro silica (MS) 3% steel fiber in concrete leads to the improvement by 37% for compressive strength. It was observed from the results of tensile strength that the samples containing 15% Rice Husk Ash (RHA) and 39 % of Fly Ash (FA) increased the tensile strength by 24% as compared to the controlled concrete. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to an increase of 20% as compared to the controlled ones. Also, the replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP), 39 % of micro silica (MS) 3% steel fiber increased the tensile strength by 40 % as compared to the controlled concrete sample. Finally, it was concluded that the replacement of 10% RHA, 39% micro Silica, 10% WG in concrete was found to be superior for increasing the mechanical properties of concrete.


Sign in / Sign up

Export Citation Format

Share Document