Parameter Estimation in a Rule-Based Fiber Orientation Model from End Systolic Strains Using the Reduced Order Unscented Kalman Filter

Author(s):  
Luca Barbarotta ◽  
Peter H. M. Bovendeerd
2021 ◽  
Author(s):  
Afshin Rahimi

There has been an increasing interest in fault diagnosis in recent years, as a result of the growing demand for higher performance, efficiency, reliability and safety in control systems. A faulty sensor or actuator may cause process performance degradation, process shut down, or a fatal accident. Quick fault detection and isolation can help avoid abnormal event progression and minimize the quality and productivity offsets. In space systems specifically, space and power are limited in the satellites, which means that hardware redundancy is not very practical. If actuator faults occur, analytical redundancy techniques should be employed to determine if, where, and how the fault(s) occurred. To do so, different approaches have been developed and studied and one of the wellknown approaches in the literature is using the Kalman Filter as an observer for the purpose of parameter estimation and fault detection. The gains for the filter should be selected and the selection of the process and measurement noise statistics, commonly referred to as “filter tuning,” is a major implementation issue for the Kalman filter. This process can have a significant impact on the filter performance. In practice, Kalman filter tuning is often an ad-hoc process involving a considerable amount of time for trial and error to obtain a filter with desirable –qualitative or quantitative- performance characteristics. This thesis focuses on presenting an algorithm for automation of the selection of the gains using an evolutionary swarm intelligence based optimization algorithm (Particle Swarm) to minimize the residuals of the estimated parameters. The methodology can be applied to any filter or controller but in this thesis, an Adaptive Unscented Kalman Filter parameter estimation applied to a reaction wheel unit is used for the purpose of performance evaluation of the proposed methodology.


2014 ◽  
Vol 687-691 ◽  
pp. 787-790
Author(s):  
Rong Jun Yang ◽  
Yao Ye

. For effectively using flight test data to extract drag coefficient, an optimal observer based on parameter estimation technique is proposed. The point mass dynamic equation is used to form the Unscented Kalman Filter (UKF) and the smoother (URTSS) for the estimation of a projectile’s flight states. The projectile flight states are then solved and utilized to extract the drag coefficient information using the observer techniques. The simulation verifies the feasibility of the method: with measurement noise, the accurate drag coefficient is obtained by using the smoother.


Author(s):  
Seokyoung Ahn ◽  
Joseph J. Beaman ◽  
Rodney L. Williamson ◽  
David K. Melgaard

Electroslag Remelting (ESR) is used widely throughout the specialty metals industry. The process generally consists of a regularly shaped electrode that is immersed a small amount in liquid slag at a temperature higher than the melting temperature of the electrode. Melting droplets from the electrode fall through the lower density slag into a liquid pool constrained by a crucible and solidify into an ingot. High quality ingots require that electrode melt rate and immersion depth be controlled. This can be difficult when process conditions are such that the temperature distribution in the electrode is not at steady state. A new method of ESR control has been developed that incorporates an accurate, reduced-order melting model to continually estimate the temperature distribution in the electrode. The ESR process is highly nonlinear, noisy, and has coupled dynamics. An extended Kalman filter and an unscented Kalman filter were chosen as possible estimators and compared in the controller design. During the highly transient periods in melting, the unscented Kalman filter showed superior performance for estimating and controlling the system.


2012 ◽  
Vol 29 (10) ◽  
pp. 1128-1136 ◽  
Author(s):  
Ji-Hoon Seung ◽  
Tae-Yeong Kim ◽  
Amir Atiya ◽  
Alexander Parlos ◽  
Kil-To Chong

Sign in / Sign up

Export Citation Format

Share Document