Optimization of a High-Lift Mechanism Motion Generation Synthesis Using MHS

Author(s):  
Suwin Sleesongsom ◽  
Sujin Bureerat
Proceedings ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 5
Author(s):  
Chabphet ◽  
Santichatsak ◽  
Thalang ◽  
Sleesongsom ◽  
Bureerat

This paper proposes an approach to synthesize a high-lift mechanism (HLM) of a transportation aircraft. Such a mechanism is very important for generation of additional lift to an aircraft wing during take-off and landing. The design problem is minimization of error between the motions of a four-bar mechanism for controlling a flap to the target points. The optimum target points are positions and angles of flap at the take-off and landing conditions, which are designed based on maximizing the lift to drag ratio. Design constraints include the conditions of four-bar mechanism to work properly, limiting positions and workplace of the mechanism. A optimizer used in this study, is in a group of metaheuristics (MHs). The results show the optimum mechanism can generate flap motion fulfilling the design targets, thus, the proposed technique can be used to increase the performance of HLM.


Author(s):  
Katsuhisa FUJITA ◽  
Katsutoshi KOIKE ◽  
Takurou KOSEKI

AIAA Journal ◽  
2020 ◽  
Vol 58 (7) ◽  
pp. 2806-2819 ◽  
Author(s):  
Hadar Ben-Gida ◽  
Roi Gurka ◽  
Daniel Weihs

2015 ◽  
Vol 46 (7) ◽  
pp. 619-629
Author(s):  
Albert Vasilievich Petrov ◽  
Vladimir Fedorovich Tretyakov

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1884-1892
Author(s):  
Stuart E. Rogers ◽  
Karlin Roth ◽  
Steven M. Nash
Keyword(s):  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


Sign in / Sign up

Export Citation Format

Share Document