Composite Forming by the Method of Prestressing of Carbon Unidirectional Tape

2021 ◽  
pp. 99-109
Author(s):  
Vasilii Plevkov ◽  
Artem Ustinov ◽  
Andrei Plyaskin ◽  
Victor Bunkov ◽  
Yulia Silman
Keyword(s):  
2003 ◽  
Vol 125 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Daniel F. Walczyk ◽  
Jean F. Hosford ◽  
John M. Papazian

The application of composites in the aircraft industry has increased significantly over the past few decades. With traditional composite laminate shaping, each layer is made to conform to the mold surface by hand before subsequent layers are added. This is a very labor- and time-intensive process. There is a great deal of interest in developing an automated process for forming composite parts with compound curvatures. The proposed composite forming process utilizes a computer-controlled, reconfigurable discrete element mold to incrementally form a compound curvature part shape from a flat lay-up, thereby facilitating process automation. An elastomeric interpolating layer, called an interpolator, is placed on top of the hemispherical forming ends of the die elements to prevent dimpling of the composite lay-up. The process employs vacuum to pull a single diaphragm (top), composite, and interpolator into contact with the mold surface. Through an experimental investigation, this new composites forming process with “active” tooling has been successfully demonstrated. Heating of the composite is accomplished by uncontained, forced convection using a matrix of heated air jets mounted above the composite. However, low-powered conduction is shown to be the best heating method in terms of both composite heating time and minimization of through-thickness temperature. Using vacuum to conform both the composite and the interpolator to the mold, and choosing sufficiently stiff diaphragm and interpolator materials, undimpled and wrinkle-free composite parts have been formed in an incremental fashion.


2014 ◽  
Vol 611-612 ◽  
pp. 300-305 ◽  
Author(s):  
Olga Smerdova ◽  
Michael P.F. Sutcliffe

This experimental study is focused on identification of tribological mechanisms acting during forming of polymer composites. The range of relevant processes includes fibre placement, tape lay-up, moulding, draping, and RTM. Two types of tribological experiments, relying both on simultaneous application of compression and shear loadings, are carried out. Firstly, model macromechanical tests are undertaken on plastic rods of millimetric diameter immersed in a viscous liquid, representing composite fibres and matrix, respectively. By careful simulation of forming conditions, this experiment helps to identify the friction phenomena occurring in real composites. On the other hand, the micromechanics of forming processes is studied through a microscopic experiment on real carbon fabric. This material is clamped between two glass plates and pulled in opposing directions in the plane of the fabric. It is hypothesized that the evolution of contact area due to shearing that can be measured in this experiment is an essential feature of the tribology of forming processes, a topic which hitherto has not been investigated.


2021 ◽  
Vol 267 ◽  
pp. 113888
Author(s):  
Jeong-Yeop Kim ◽  
Yeon-Taek Hwang ◽  
Jeong-Hyeon Baek ◽  
Won-Yong Song ◽  
Hak-Sung Kim

Author(s):  
Gotfrīds Noviks

<p class="R-AbstractKeywords"><span lang="EN-US">Artificial composite materials are currently being produced in large quantities, they are diverse and they are widely used in the economy. There have been extensive theoretical and experimental studies of different types of components, developed the calculation methods of composites production with predefined properties.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">At the same time industry produces a lot of mineral and polymer waste, which are practically technogenic resources, but their use is currently at quite low levels. The paper examines the possibilities to use technogenic resources- mineral (such as ash and clay) and organic (polymers -PET containers) for producing qualitative composite materials. For this purpose theoretical analysis and calculations of the physical properties of components and process parameters that determine the operating characteristics of the composite material were carried out.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">Composite-forming process efficiency determinative parameters were analysed: adhesion, the specific surface energy, specific free surface, adsorption capacity and the degree of dispersion of the particles.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">The role of external factors in processing of composite were examined – temperature, concentration of components.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">The characteristics of prepared samples of composites showed the possibility to use these waste for the development of qualitative products for different purposes.</span></p>


Sign in / Sign up

Export Citation Format

Share Document