Generalised Beam Theory (GBT) for Shear Deformable Stiffened Sections

2014 ◽  
Vol 553 ◽  
pp. 600-605
Author(s):  
Gerard Taig ◽  
Gianluca Ranzi

A Generalised Beam Theory (GBT) formulation is presented to analyse the structural behaviour of shear deformable thin-walled members with partially stiffened cross-sections located at arbitrary locations along their length. The deformation modes used in the formulation are taken as the dynamic eigenmodes of a planar frame representing the unstiffened cross-section. Constraint equations are derived and implemented in the GBT member analysis to model the influence of rigid stiffeners on the member response. The accuracy of the approach is validated against a shell finite element model developed in Abaqus. A numerical example describing the linear elastic behaviour of partially stiffened thin-walled member is provided to outline the usability and flexibility of the proposed method.

2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

A formulation of the Generalised Beam Theory (GBT) is presented for the 1st order inelastic analysis of thin-walled steel bars subjected to arbitrary loading and boundary conditions. Five illustrative examples are shown to validate the theory for cases involving global deformation only, namely uniform bending, non-uniform bending, combined bending and axial compression, and non-uniform torsion. Lastly, the results are validated against ABAQUS using beam and shell finite element models. The correlation is typically great concerning equilibrium paths, deformed configurations, and stress diagrams. In those cases where results do not compare so well, possible causes are pointed out.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

After providing a brief overview of a recently developed and validated elastoplastic post-buckling Generalised Beam Theory (GBT) formulation, the paper presents and discusses illustrative numerical results concerning three tubular members exhibiting bi-linear and non-linear material behaviours. The GBT results consist of equilibrium paths, modal participation diagrams, stress contours, displacement profiles and collapse mechanisms, most of which are compared with values obtained from Abaqus shell finite element analyses. The GBT modal nature makes it possible to (i) acquire in-depth knowledge about the member behavioural mechanics at any given equilibrium state (elastic or elastic-plastic), as well as (ii) evidence the GBT computational efficiency (d.o.f. reduction of over 75%), partly due to the exclusion from the analyses of all deformation modes playing no role in a given member response.


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2016 ◽  
Vol 22 (10) ◽  
pp. 2011-2039 ◽  
Author(s):  
Gerard Taig ◽  
Gianluca Ranzi

This paper presents a Generalised Beam Theory formulation to study the partial interaction behaviour of two-layered prismatic steel–concrete composite beams. The novelty of the proposed approach is in its capacity to handle the deformability of the shear connections at the interface between the slab and steel beam in both the longitudinal and transverse directions in the evaluation of the deformation modes. This method falls within a category of cross-sectional analyses available in the literature for which a suitable set of deformation modes, including conventional, extension and shear, is determined from dynamic analyses of discrete planar frame models representing the cross-section. In this context, the shear connections are modelled using shear deformable spring elements. As a result, the in-plane partial shear interaction behaviour is accounted for in the planar dynamic analysis during the evaluation of the conventional and extension modes, while the longitudinal partial interaction behaviour associated with the shear modes is included in the out-of-plane dynamic analyses. In the case of the conventional modes, the longitudinal slip is accounted for in the post-processing stage where the warping displacements are determined. A numerical example of a composite box girder beam is presented and its structural response investigated for different levels of shear connection stiffness in both the longitudinal and transverse directions. The accuracy of the numerical results is validated against those obtained with a shell finite element model implemented in ABAQUS/Standard software.


Author(s):  
Roberto Ramos ◽  
Celso P. Pesce ◽  
Clo´vis A. Martins

Flexible risers are complex structures used in offshore oil exploitation activities. Such structures are composed of several concentric polymeric and steel armour layers which withstand static and dynamic loads applied by the floating production vessel and by the ocean environment. Determining the equivalent flexural stiffness of such structures is an important task for the global structural analysis, since it provides a probable value that can be used in this analysis to predict the load distribution along the line (that is important in critical regions such as the TDP and the top). Besides that, estimates for the flexural stiffness are also important for predicting instabilities in the line (loop formation). However, the complexity imposed mainly by geometry and contact conditions renders a finite element analysis of these structures practically unfeasible, even considering that all the materials obey a linear elastic behaviour. So, in order to achieve this task, analytical methods have been proved to be, till now, a better choice. The aim of this work is to present the basis of a new analytical equation to estimate the flexural structural behaviour of flexible risers. Emphasis is given on the geometrical analysis of armour layers.


Sign in / Sign up

Export Citation Format

Share Document