scholarly journals Effective Hybrid System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness

Author(s):  
Zhenya Zhang ◽  
Deyun Lyu ◽  
Paolo Arcaini ◽  
Lei Ma ◽  
Ichiro Hasuo ◽  
...  

AbstractHybrid system falsification is an important quality assurance method for cyber-physical systems with the advantage of scalability and feasibility in practice than exhaustive verification. Falsification, given a desired temporal specification, tries to find an input of violation instead of a proof guarantee. The state-of-the-art falsification approaches often employ stochastic hill-climbing optimization that minimizes the degree of satisfaction of the temporal specification, given by its quantitative robust semantics. However, it has been shown that the performance of falsification could be severely affected by the so-called scale problem, related to the different scales of the signals used in the specification (e.g., rpm and speed): in the robustness computation, the contribution of a signal could be masked by another one. In this paper, we propose a novel approach to tackle this problem. We first introduce a new robustness definition, called QB-Robustness, which combines classical Boolean satisfaction and quantitative robustness. We prove that QB-Robustness can be used to judge the satisfaction of the specification and avoid the scale problem in its computation. QB-Robustness is exploited by a falsification approach based on Monte Carlo Tree Search over the structure of the formal specification. First, tree traversal identifies the sub-formulas for which it is needed to compute the quantitative robustness. Then, on the leaves, numerical hill-climbing optimization is performed, aiming to falsify such sub-formulas. Our in-depth evaluation on multiple benchmarks demonstrates that our approach achieves better falsification results than the state-of-the-art falsification approaches guided by the classical quantitative robustness, and it is largely not affected by the scale problem.

Author(s):  
Chao Gao ◽  
Martin Müller ◽  
Ryan Hayward

AlphaGo Zero pioneered the concept of two-head neural networks in Monte Carlo Tree Search (MCTS), where the policy output is used for prior action probability and the state-value estimate is used for leaf node evaluation. We propose a three-head neural net architecture with policy, state- and action-value outputs, which could lead to more efficient MCTS since neural leaf estimate can still be back-propagated in tree with delayed node expansion and evaluation. To effectively train the newly introduced action-value head on the same game dataset as for two-head nets, we exploit the optimal relations between parent and children nodes for data augmentation and regularization. In our experiments for the game of Hex, the action-value head learning achieves similar error as the state-value prediction of a two-head architecture. The resulting neural net models are then combined with the same Policy Value MCTS (PV-MCTS) implementation. We show that, due to more efficient use of neural net evaluations, PV-MCTS with three-head neural nets consistently performs better than the two-head ones, significantly outplaying the state-of-the-art player MoHex-CNN.


Author(s):  
Yuan Yao ◽  
Natasha Alechina ◽  
Brian Logan ◽  
John Thangarajah

A key problem in Belief-Desire-Intention agents is how an agent progresses its intentions, i.e., which plans should be selected and how the execution of these plans should be interleaved so as to achieve the agent’s goals. Previous approaches to the intention progression problem assume the agent has perfect information about the state of the environment. However, in many real-world applications, an agent may be uncertain about whether an environment condition holds, and hence whether a particular plan is applicable or an action is executable. In this paper, we propose SAU, a Monte-Carlo Tree Search (MCTS)-based scheduler for intention progression problems where the agent’s beliefs are uncertain. We evaluate the performance of our approach experimentally by varying the degree of uncertainty in the agent’s beliefs. The results suggest that SAU is able to successfully achieve the agent’s goals even in settings where there is significant uncertainty in the agent’s beliefs.


Sign in / Sign up

Export Citation Format

Share Document