A New Meta-heuristic Optimization Algorithm Based on the String Theory Paradigm from Physics

2022 ◽  
Author(s):  
Oscar Castillo ◽  
Luis Rodriguez
2020 ◽  
Vol 10 (1) ◽  
pp. 194-219 ◽  
Author(s):  
Sanjoy Debnath ◽  
Wasim Arif ◽  
Srimanta Baishya

AbstractNature inspired swarm based meta-heuristic optimization technique is getting considerable attention and established to be very competitive with evolution based and physical based algorithms. This paper proposes a novel Buyer Inspired Meta-heuristic optimization Algorithm (BIMA) inspired form the social behaviour of human being in searching and bargaining for products. In BIMA, exploration and exploitation are achieved through shop to shop hoping and bargaining for products to be purchased based on cost, quality of the product, choice and distance to the shop. Comprehensive simulations are performed on 23 standard mathematical and CEC2017 benchmark functions and 3 engineering problems. An exhaustive comparative analysis with other algorithms is done by performing 30 independent runs and comparing the mean, standard deviation as well as by performing statistical test. The results showed significant improvement in terms of optimum value, convergence speed, and is also statistically more significant in comparison to most of the reported popular algorithms.


Energies ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 319 ◽  
Author(s):  
Nadeem Javaid ◽  
Sakeena Javaid ◽  
Wadood Abdul ◽  
Imran Ahmed ◽  
Ahmad Almogren ◽  
...  

2021 ◽  
Vol 41 (1) ◽  
pp. 1657-1675
Author(s):  
Luis Rodriguez ◽  
Oscar Castillo ◽  
Mario Garcia ◽  
Jose Soria

The main goal of this paper is to outline a new optimization algorithm based on String Theory, which is a relative new area of physics. The String Theory Algorithm (STA) is a nature-inspired meta-heuristic, which is based on studies about a theory stating that all the elemental particles that exist in the universe are strings, and the vibrations of these strings create all particles existing today. The newly proposed algorithm uses equations based on the laws of physics that are stated in String Theory. The main contribution in this proposed method is the new techniques that are devised in order to generate potential solutions in optimization problems, and we are presenting a detailed explanation and the equations involved in the new algorithm in order to solve optimization problems. In this case, we evaluate this new proposed meta-heuristic with three cases. The first case is of 13 traditional benchmark mathematical functions and a comparison with three different meta-heuristics is presented. The three algorithms are: Flower Pollination Algorithm (FPA), Firefly Algorithm (FA) and Grey Wolf Optimizer (GWO). The second case is the optimization of benchmark functions of the CEC 2015 Competition and we are also presenting a statistical comparison of these results with respect to FA and GWO. In addition, we are presenting a third case, which is the optimization of a fuzzy inference system (FIS), specifically finding the optimal design of a fuzzy controller, where the main goal is to optimize the membership functions of the FIS. It is important to mention that we used these study cases in order to analyze the proposed meta-heuristic with: basic problems, complex problems and control problems. Finally, we present the performance, results and conclusions of the new proposed meta-heuristic.


Sadhana ◽  
2017 ◽  
Vol 42 (6) ◽  
pp. 817-826 ◽  
Author(s):  
N Archana ◽  
R Vidhyapriya ◽  
Antony Benedict ◽  
Karthik Chandran

2020 ◽  
Vol 37 (7) ◽  
pp. 2357-2389 ◽  
Author(s):  
Ali Kaveh ◽  
Ataollah Zaerreza

Purpose This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm. Design/methodology/approach The agents are first separated into multi-communities and the optimization process is then performed mimicking the behavior of a shepherd in nature operating on each community. Findings A new multi-community meta-heuristic optimization algorithm called a shuffled shepherd optimization algorithm is developed in this paper and applied to some attractive examples. Originality/value A new metaheuristic is presented and tested with some classic benchmark problems and some attractive structures are optimized.


Sign in / Sign up

Export Citation Format

Share Document