Quantum Transport Methodologies for Spin Transport

2021 ◽  
pp. 45-88
Author(s):  
Marc Vila Tusell
Author(s):  
Anil Kumar Singh ◽  
Sudhanshu Choudhary

Spin dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT) and non-equilibrium green’s function (NEGF) formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC) which results in higher magneto resistance (MR). Twisting allows spin-up current almost equivalent to the pristine CNT case resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones with pristine giving higher spin filtration than twisted CNT.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750043 ◽  
Author(s):  
Zeinab Rashidian ◽  
Parvin Bayati ◽  
Zeinab Lorestaniwiess

The transmission properties of armchair- and zigzag-edged graphene nanoribbon junctions between graphene electrodes are examined by means of the standard nonequilibrium Green’s function (NEGF) technique. The quantum transport of electrons is studied through a monolayer graphene strip in the presence of Rashba spin–orbit coupling that acts as a barrier between the two normal leads. The present work compares the conductances of nanoribbons with zigzag and armchair edges. Since the nature of induced gap for zigzag edge is different from armchair, it is expected to give rise to different types of conductance for each edge. Findings indicate that the Rashba strength has more pronounced influence on armchair ribbons than on zigzag ribbons, and the minimum conductance of [Formula: see text] for nanoribbon remains intact even in the presence of the Rashba spin–orbit coupling. It is predicted that controllability of spin transport in the monolayer graphene may contribute to the development of well-known spintronics.


Author(s):  
Juan P. Mendez ◽  
Denis Mamaluy ◽  
Xujiao Gao ◽  
Evan M. Anderson ◽  
DeAnna M. Campbell ◽  
...  
Keyword(s):  

Author(s):  
Klaus Morawetz

The method of the equation of motion is used to derive the Martin–Schwinger hierarchy for the nonequilibrium Green’s functions. The formal closure of the hierarchy is reached by using the selfenergy which provides a recipe for how to construct selfenergies from approximations of the two-particle Green’s function. The Langreth–Wilkins rules for a diagrammatic technique are shown to be equivalent to the weakening of initial correlations. The quantum transport equations are derived in the general form of Kadanoff and Baym equations. The information contained in the Green’s function is discussed. In equilibrium this leads to the Matsubara diagrammatic technique.


Author(s):  
Branislav K. Nikolić ◽  
Kapildeb Dolui ◽  
Marko D. Petrović ◽  
Petr Plecháč ◽  
Troels Markussen ◽  
...  

2021 ◽  
Vol 103 (14) ◽  
Author(s):  
Geert R. Hoogeboom ◽  
Geert-Jan N. Sint Nicolaas ◽  
Andreas Alexander ◽  
Olga Kuschel ◽  
Joachim Wollschläger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Ricardo Román-Ancheyta ◽  
Barış Çakmak ◽  
Roberto de J. León-Montiel ◽  
Armando Perez-Leija

2020 ◽  
Vol 67 (12) ◽  
pp. 5662-5668
Author(s):  
Adel M'foukh ◽  
Marco G. Pala ◽  
David Esseni

Sign in / Sign up

Export Citation Format

Share Document