diagrammatic technique
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jaydeep Kumar Basak ◽  
Debarshi Basu ◽  
Vinay Malvimat ◽  
Himanshu Parihar ◽  
Gautam Sengupta

We compute the entanglement negativity for various pure and mixed state configurations in a bath coupled to an evaporating two dimensional non-extremal Jackiw-Teitelboim (JT) black hole obtained through the partial dimensional reduction of a three dimensional BTZ black hole. Our results exactly reproduce the analogues of the Page curve for the entanglement negativity which were recently determined through diagrammatic technique developed in the context of random matrix theory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Z. Z. Du ◽  
C. M. Wang ◽  
Hai-Peng Sun ◽  
Hai-Zhou Lu ◽  
X. C. Xie

AbstractThe nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensitive to the breaking of discrete and crystal symmetries. It is a quantum transport phenomenon that has deep connection with the Berry curvature. However, a full quantum description is still absent. Here we construct a quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite different from nonlinear optics, nearly all the diagrams account for the disorder effects, which play decisive role in the electronic transport. After including the disorder contributions in terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and predict a pure disorder-induced nonlinear Hall effect for point groups C3, C3h, C3v, D3h, D3 in 2D, and T, Td, C3h, D3h in 3D. This work will be helpful for explorations of the topological physics beyond the linear regime.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
A. A. Radovskaya ◽  
A. G. Semenov

AbstractWe study the evolution of the non-equilibrium quantum fields from a highly excited initial state in two approaches: the standard Keldysh–Schwinger diagram technique and the semiclassical expansion. We demonstrate explicitly that these two approaches coincide if the coupling constant g and the Plank constant $$\hbar $$ ħ are simultaneously small. Also, we discuss loop diagrams of the perturbative approach, which are summed up by the leading order term of the semiclassical expansion. As an example, we consider shear viscosity for the scalar field theory at the leading semiclassical order. We introduce the new technique that unifies both semiclassical and diagrammatic approaches and open the possibility to perform the resummation of the semiclassical contributions.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Pedro Agostini ◽  
Tolga Altinoluk ◽  
Néstor Armesto

AbstractWe compute multi-gluon production in the Color Glass Condensate approach in dilute-dense collisions, $$\hbox {p}A$$ p A , extending previous calculations up to four gluons. We include the contributions that are leading in the overlap area of the collision but keep all orders in the expansion in the number of colors. We develop a diagrammatic technique to write the numerous color contractions and exploit the symmetries to group the diagrams and simplify the expressions. To proceed further, we use the McLerran–Venugopalan and Golec–Biernat–Wüsthoff models for the projectile and target averages, respectively. We use a form of the Lipatov vertices that leads to the Wigner function approach for the projectile previously employed, that we generalise to take into account quantum correlations in the projectile wave function. We provide analytic expressions for integrated and differential two gluon cumulants and show a smooth dependence on the parameters defining the projectile and target Wigner function and dipole, respectively. For four gluon correlations we find that the second order four particle cumulant is negative, so a sensible second Fourier azimuthal coefficient can be defined. The effect of correlations in the projectile on this result results qualitatively and quantitatively large.


2020 ◽  
Vol 65 (10) ◽  
pp. 865
Author(s):  
O. O. Boliasova ◽  
V. N. Krivoruchko

Understanding the ultrafast spin dynamics in magnetically ordered materials is important for the comprehenssion of fundamental limits in spin-based magnetic electronics – magnonics. We have studied a microscopic model of magnetization dynamics in a two-sublattice antiferromagnet with the emphasis on longitudinal spin excitations. The diagrammatic technique for spin operators has been used to overcome limitations typical of phenomenological approaches. The graphical representations of spin wave propagators allow us to summing up the infinite series of distinctive diagrams. Its sum is transformed into an analytic expression for the longitudinal spin susceptibility xzz (q, w) applicable in all regions of the frequency w and wave vector q spaces beyond the hydrodynamical and critical regimes. It is found that the longitudinal magnetization dynamics consists of two types of excitations, which have different dependences on the temperature and wave vector q. The obtained result could be important for understanding the physics of nonequilibrium magnetic dynamics under the effect of ultrafast laser pulses in antiferromagnetic materials.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950050
Author(s):  
Tian Feng See

Engineering strong photon–photon interactions at the quantum level have been crucial in various areas of research, notably in quantum information processing and quantum simulation. It is often done by coupling matter strongly to light. A promising way to achieve this is via waveguide quantum electrodynamics (QED). Motivated by these advancements, we study few-photon transport in waveguide QED setups. First, we present a diagrammatic technique to systematically study multiphoton scattering based on the scattering formalism and Green’s function approach. We demonstrate our proposal through physically relevant examples involving scattering of few-photon states from two-level emitters as well as from arrays of correlated Kerr nonlinear resonators described by the Bose–Hubbard model. In the second part, we apply the diagrammatic technique that was developed to perform a comprehensive study on a Bose–Hubbard lattice with a quasi-periodic potential. This model exhibits many-body localisation. We compute the two-photon transmission probability and show that it carries signatures of the underlying localisation transition with close agreement to the participation ratio of the eigenstates. The systematic scattering approach provided in this paper provides a foundation for future works at the interface between quantum optics and condensed matter.


Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
E. Martello ◽  
G. Angilella ◽  
L. Pollet

The application of Feynman’s diagrammatic technique to classical link models with local constraints seems impossible due to (i) the absence of a free Gaussian theory on top of which the perturbative expansion can be constructed, and (ii) Dyson’s collapse argument, rendering the perturbative expansion divergent. However, we show for the classical 3D Ising model how both problems can be circumvented using a Grassmann representation. This makes it possible to obtain an expansion of the spin correlation function and the magnetic susceptibility in terms of the inverse temperature in the thermodynamic limit, through which the values for the critical temperature and critical index g are evaluated within 1.6% and 5.4% of their accepted values, respectively. Our work is a straightforward adaptation of the theory previously developed in an earlier paper.


2018 ◽  
Vol 33 (24) ◽  
pp. 1850140 ◽  
Author(s):  
Dmitrii A. Trunin

We consider the simplest example of a nonstationary quantum system which is quantum mechanical oscillator with varying frequency and [Formula: see text] self-interaction. We calculate loop corrections to the Keldysh, retarded/advanced propagators and vertices using Schwinger–Keldysh diagrammatic technique and show that there is no physical secular growth of the loop corrections in the cases of constant and adiabatically varying frequency. This fact corresponds to the well-known adiabatic theorem in quantum mechanics. However, in the case of nonadiabatically varying frequency we obtain strong IR corrections to the Keldysh propagator which come from the “sunset” diagrams, grow with time indefinitely and indicate energy pumping into the system. It reveals itself via the change in time of the level population and of the anomalous quantum average.


Author(s):  
Klaus Morawetz

The method of the equation of motion is used to derive the Martin–Schwinger hierarchy for the nonequilibrium Green’s functions. The formal closure of the hierarchy is reached by using the selfenergy which provides a recipe for how to construct selfenergies from approximations of the two-particle Green’s function. The Langreth–Wilkins rules for a diagrammatic technique are shown to be equivalent to the weakening of initial correlations. The quantum transport equations are derived in the general form of Kadanoff and Baym equations. The information contained in the Green’s function is discussed. In equilibrium this leads to the Matsubara diagrammatic technique.


Sign in / Sign up

Export Citation Format

Share Document