Mathematical Approaches to Forecasting and Researching the Technical State of Cylindrical Shells of Energy Objects’ Elements Based on Vibration Monitoring Systems

2021 ◽  
pp. 107-119
Author(s):  
Viktoria Dzyuba ◽  
Artur Zaporozhets
Author(s):  
Dirk Söffker

Abstract Reliability and safety aspects are becoming much more important due to higher quality requirements, complicated and/or connected processes. The fault monitoring systems to be commonly used in machine- and rotordynamics are based on signal analysis methods. Furthermore, various kinds of fault detection and isolation (FDI)-schemes are already applied to a lot of technical applications of detecting and isolating sensor and actuator failures (Isermann, 1994; van Schrick, 1994) and also to fault detection in power plants (in general) or in manufacturing machines. An implicit assumption is that process or machine changes due to faults lead to changes in calculated parameters, which are unique and unambiguous. In the case of applying methods of signal analysis this means spectrums etc. the vibration behaviour will be monitored very well but have to be interpreted. On the other hand signal parameters usually only describe the system by analyzing output signals without use of known and unknown inner parameters and/or inputs. These parameters are available, and normally this knowledge is used by the operating staff interpreting the resulting signal parameters. In this way a decision-making problem appears so that questions about the physical character of faults, about the existence of special faults and also about the location of failures/faults has to be answered. In this way the experience and knowledge of the interpreting persons are very important. In this contribution the problems of the decision-making process are tried to defuse: • The available knowledge about the unfaulty system parameters is used to built up beside a nominal system model an unambiguous fault-specific ratio. Inner states of the structure are estimated by an PI-observer. • The developed robust PI-observer (Söffker et al., 1993a; Söffker et al., 1995a) estimates inner states and unknown inputs. In (Söffker et al., 1993b) this new method is applied to the crack detection of a rotor, but not proved. In this paper the proof is given and a generalization is described. The advantages in contrast to usual signal based vibration monitoring systems and also modern FDI-schemes are shown.


2013 ◽  
Vol 11 ◽  
pp. 1127-1134 ◽  
Author(s):  
Ekki Kurniawan ◽  
Deny Hamdani ◽  
Sonny Novario ◽  
Djoko Darwanto ◽  
Ngapuli I. Sinisuka

Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


1984 ◽  
Vol 106 (4) ◽  
pp. 935-939
Author(s):  
H. A. Kidd

The continued use of gas turbines in industrial applications and increased customer desires for trend analysis has led gas turbine suppliers to develop sophisticated, reliable, cost-effective vibration monitoring systems. This paper discusses the application of case vibration monitoring systems and the design criteria for each component. Engine installation, transducer mounting brackets, types of transducers, interconnecting cables and connectors, charge amplifiers, and signal conditioning and monitoring are considered. Examples are given of the benefits experienced with the final system in several of Dresser Clark’s engine development programs, by manufacturing and production testing, and by Dresser’s field service staff.


Author(s):  
James C. Adams

Industrial aeroderivative gas turbines are becoming increasingly popular for use in both on-shore and off-shore installations. The characteristics of these machines — high efficiency in simple cycle operation, small size, and light weight — make them ideal for industrial applications. As the aeroderivative gas turbine has become more widely used, the need for more reliable monitoring methods has become increasingly apparent. Traditional velocity transducer based seismic monitoring systems have had several shortcomings when applied to aeroderivative gas turbines. One of these problems was nuisance alarms due to increasing transducer noise output. Another was not detecting increasing casing vibration because of transducer deterioration. Overcoming these problems has required advances in transducer technology as well as changes in signal processing techniques. This paper describes the technology and techniques used in new seismic vibration monitoring systems.


Author(s):  
Irem Y. Tumer ◽  
Edward M. Huff

Abstract Typical vibration monitoring systems for helicopter gearboxes rely on single-axis accelerometer data. This paper investigates whether triaxial accelerometers can provide crucial flight regime information for helicopter gearbox monitoring systems. The frequency content of the three different directions is compared and analyzed using time-synchronously averaged vibration data. The triaxial data are decorrelated using a mathematical transformation, and compared to the original axes to determine their optimality. The benefits of using triaxial data for vibration monitoring and diagnostics are explored by analyzing the changes in the direction of the principal axis of vibration formed using all three axes of vibration. The statistical variation introduced due to the experimental variables is further analyzed using an Analysis of Variance approach to determine the effect of each variable on the overall signature. The results indicate that triaxial accelerometers can provide additional information about the frequency content of helicopter gearbox vibrations, providing researchers and industry with a novel method of capturing and monitoring changes in the baseline vibration signatures.


Sign in / Sign up

Export Citation Format

Share Document