Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines
Latest Publications


TOTAL DOCUMENTS

61
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851173

Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


Author(s):  
Shyang Maw Lim ◽  
Anders Dahlkild ◽  
Mihai Mihaescu

Unlike conventional turbomachinery, an automotive turbocharger’s turbine is operated under unsteady hot and pulsatile flow due to the inherent nature of reciprocating engine. Although the turbine is integrated with exhaust manifold in real application, some experiments and numerical studies ignore its presence. In this study, we aimed to investigate the effects of upstream complex exhaust manifold on the prediction of pulse flow turbine performance via Detached Eddy Simulation (DES). Heat transfer was incorporated and the exergy based approach was used to quantify the heat transfer associated losses. Our primary results showed that under the investigated turbine stage, although the presence of exhaust manifold influences the prediction of heat transfer and internal irreversibilities in the scroll significantly, it does not significantly affect the prediction of turbine power, heat transfer and irreversibilities at the downstream components.


Author(s):  
Piotr Łuczyński ◽  
Dennis Toebben ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

In recent decades, the rising share of commonly subsidized renewable energy especially affects the operational strategy of conventional power plants. In pursuit of flexibility improvements, extension of life cycle, in addition to a reduction in start-up time, General Electric has developed a product to warm-keep high/intermediate pressure steam turbines using hot air. In order to optimize the warm-keeping operation and to gain knowledge about the dominant heat transfer phenomena and flow structures, detailed numerical investigations are required. Considering specific warm-keeping operating conditions characterized by high turbulent flows, it is required to conduct calculations based on time-consuming unsteady conjugate heat transfer (CHT) simulations. In order to investigate the warm-keeping process as found in the presented research, single and multistage numerical turbine models were developed. Furthermore, an innovative calculation approach called the Equalized Timescales Method (ET) was applied for the modeling of unsteady conjugate heat transfer (CHT). The unsteady approach improves the accuracy of the stationary simulations and enables the determination of the multistage turbine models. In the course of the research, two particular input variables of the ET approach — speed up factor (SF) and time step (TS) — have been additionally investigated with regard to their high impact on the calculation time and the quality of the results. Using the ET method, the mass flow rate and the rotational speed were varied to generate a database of warm-keeping operating points. The main goal of this work is to provide a comprehensive knowledge of the flow field and heat transfer in a wide range of turbine warm-keeping operations and to characterize the flow patterns observed at these operating points. For varying values of flow coefficient and angle of incidence, the secondary flow phenomena change from well-known vortex systems occurring in design operation (such as passage, horseshoe and corner vortices) to effects typical for windage, like patterns of alternating vortices and strong backflows. Furthermore, the identified flow patterns have been compared to vortex systems described in cited literature and summarized in the so-called blade vortex diagram. The comparison of heat transfer in the form of charts showing the variation of the Nusselt-numbers with respect to changes in angle of incidence and flow coefficients at specific operating points is additionally provided.


Author(s):  
Vamadevan Gowreesan ◽  
Wayne Greaves

A radial steam turbine developed cracks after 220,000 hours of service. The rotor had an integral disc with eight rows of blades, and a short stub. Nine inlets on the disc channeled steam from one side to the other, and then radially outward. Analysis of the fracture surface revealed cracks originating in some of the inlet holes, and propagating by fatigue. No material defects were found at the crack initiation sites. Hardness and microstructure (optical) across the disc were uniform, but chemical composition analysis of the alloy revealed high level of phosphorus and sulfur. In addition, the microstructure consisted of uniformly tempered martensite with manganese sulfide stringers. Although tensile properties were normal, impact testing indicated embrittlement by a shift in Fracture Appearance Transition Temperature (FATT). Metallurgical evidence of embrittlement was also found. It was concluded that service induced cyclic loading in combination with reduced crack resistance caused by embrittlement lead to cracking.


Author(s):  
Haiyu He ◽  
Tao Chen ◽  
Shiwang Fan ◽  
Xiaohua Xia ◽  
Fang Zhang ◽  
...  

700°C High Ultra Supercritical (HUSC) technology is taken into account as a more efficient clean coal-fired power generation technology which can achieve higher efficiency and less CO2 emission. With the increase of the main steam and reheat steam temperature, the temperature of regenerative extraction increased accordingly. This not only means higher investment cost and higher unreliability of power plant, but also leads to a great reduction of energy grade efficiency. To solve the above-mentioned problem, we introduce a novel system, called echelon cycle system (EC system). In EC system, a BEST (Backpressure Extraction Steam Turbine) is added, which provides power for feed-water pump and steam for feed-water heaters. The steam source of high temperature regenerative extractions is switched from main turbine to BEST, and the steam source of BEST is cold-reheat. Hence the highest regenerative extraction steam temperature decreased accordingly. EC system has been demonstrated to be a more efficient system by exergy theory[1] and energy grade theory. Three types of EC system are proposed in this paper. Thermal performance calculation of these three types of EC system under rated-load condition and part-load condition is carried out to evaluate and compare the economy of system. In order to obtain a more appropriate thermodynamic system solution, safety and restriction should also be given sufficient consideration. Meanwhile, the matrix solution method for energy grade efficiency of EC system is derived in this paper. Finally, energy grade theory is used to analyze how different schemes cause different hate rate profits.


Author(s):  
Deqi Yu ◽  
Xiaojun Zhang ◽  
Jiandao Yang ◽  
Kai Cheng ◽  
Weilin Shu ◽  
...  

Fir-tree root and groove profiles are widely used in gas turbine and steam turbine. Normally, the fir-tree root and groove are characterized with straight line, arc or even elliptic fillet and splines, then the parameters of these features were defined as design variables to perform root profile optimization. In ultra-long blades of CCPP and nuclear steam turbines and high-speed blades of industrial steam turbine blades, both the root and groove strength are the key challenges during the design process. Especially, in industrial steam turbines, the geometry of blade is very small but the operation velocity is very high and the blade suffers stress concentration severely. In this paper, two methods for geometry configuration and relevant optimization programs are described. The first one is feature-based using straight lines and arcs to configure the fir-tree root and groove geometry and genetic algorithm for optimization. This method is quite fit for wholly new root and groove design. And the second local optimization method is based on B-splines to configure the geometry where the local stress concentration occurs and the relevant optimization algorithm is used for optimization. Also, several cases are studied as comparison by using the optimization design platform. It can be used not only in steam turbines but also in gas turbines.


Author(s):  
Christian Kontermann ◽  
Henning Almstedt ◽  
Falk Müller ◽  
Matthias Oechsner

Changes within the global energy market and a demand for a more flexible operation of gas- and steam-turbines leads to higher utilization of main components and raises the question how to deal with this challenge. One strategy to encounter this is to increase the accuracy of the lifetime assessment by quantifying and reducing conservatisms. At first the impact of considering a fracture mechanical notch support under creep-fatigue loading is studied by discussing the results of an extensive experimental program performed on notched round-bars under global strain control. A proposal how to consider this fracture mechanical notch support within a lifetime assessment is part of the discussion of the second part. Here, a theoretical FEM-based concept is introduced and validated by comparing the theoretical prediction with the results of the previously mentioned experimental study. Finally, the applicability of the developed and validated FEM-based procedure is demonstrated.


Author(s):  
David Hemberger ◽  
Roberto De Santis ◽  
Dietmar Filsinger

As a means of meeting ever increasing emissions and fuel economy demands car manufacturers are using aggressive engine downsizing. To maintain the power output of the engine turbocharging is typically used. Compared to Mono scroll turbines, with a multi-entry system the individual volute sizing can be better matched to the single mass flow pulse from the engine cylinders. The exhaust pulse energy can be better utilised by the turbocharger turbine improving turbocharger response. Additionally the interaction of the engine exhaust pulses can be better avoided, improving the scavenging of the engine. Besides the thermodynamic advantages, the multi-entry turbine represents a challenge to the structural dynamic design of the turbine. A higher number of turbine wheel resonance points can be expected during operation. In addition, the increased use of exhaust pulse energy leads to a distinct accentuation of the blade vibration excitation. Using validated engine models, the interaction of the multi-entry turbine with the engine has been analyzed and various operating points, which may be critical for the blade vibration excitation, have been classified. These operating points deliver the input variables for unsteady computational flow dynamics (CFD) analyses. From these calculations unsteady blade forces were derived providing the necessary boundary conditions for the structural dynamic analyses by spatially and temporally high-resolved absolute pressures on the turbine surface. Goal of the investigation is to identify critical operating conditions. Important is also to investigate the effect of a scroll connection valve on blade excitation. The investigations utilize validated tools that were introduced and successfully applied to several turbine types in a series of publications over recent years. It can be stated that the engine operating condition and the admission type significantly influence the forced response reaction of the blade to the different excitation orders (EO). In case of equal admission even (or multiples of two) EOs generate the largest dynamic blade stress as can be expected due to the two turbine inlet segments. This reaction also increases with the engine speed. In the case of unequal admission, the odd EOs produce the largest forced response reaction. The maximum dynamic blade stress occurs in the region where the scroll connection is just closed. Above all, the scroll connection valve influences the Beta value and thus the basic behavior — unequal or equal admission. It has been possible to reconstruct the forced response behavior of the turbine blade within an engine combustion cycle. For the first time it could be shown for a double scroll application that there is a significant dynamic blade stress change dependent on the engine crankshaft angle. Certainly, due to the inertia of the mass and damping (mass, structure, flow), the blade will not exactly follow the predicted course. However, it is clear that the transient processes within an engine combustion cycle will affect the dynamic blade stress. This applies to the turbine wheels investigated in the work at hand with low damping, high eigenfrequencies and the considered internal combustion engines — as they are typically used in the passenger car sector.


Author(s):  
Yang Zhang ◽  
Tomasz Duda ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
Colin D. Copeland ◽  
...  

This paper is part of a two-part publication that aims to design, simulate and test an internally air cooled radial turbine. To achieve this, the additive manufacturing process, Selective Laser Melting (SLM), was utilized to allow internal cooling passages within the blades and hub. This is, to the authors’ knowledge, the first publication in the open literature to demonstrate an SLM manufactured, cooled concept applied to a small radial turbine. In this paper, the internally cooled radial turbine was investigated using a Conjugate Heat Transfer (CHT) numerical simulation. Topology Optimisation was also implemented to understand the areas of the wheel that could be used safely for cooling. In addition, the aerodynamic loss and efficiency of the design was compared to a baseline non-cooled wheel. The experimental work is detailed in Part 2 of this two-part publication. Given that the aim was to test the rotor under representative operating conditions, the material properties were provided by the SLM technology collaborator. The boundary conditions for the numerical simulation were derived from the experimental testing where the inlet temperature was set to 1023 K. A polyhedral unstructured mesh made the meshing of internal coolant plenums including the detailed supporting structures possible. The simulation demonstrated that the highest temperature at the blade leading edge was 117 K lower than the uncooled turbine. The coolant mass flow required by turbine was 2.5% of the mainstream flow to achieve this temperature drop. The inertia of the turbine was also reduced by 20% due to the removal of mass required for the internal coolant plenums. The fluid fields in both the coolant channels and downstream of the cooled rotor were analyzed to determine the aerodynamic influence on the temperature distribution. Furthermore, the solid stress distribution inside the rotor was analyzed using Finite Element Analysis (FEA) coupled with the CFD results.


Author(s):  
José Ramón Serrano ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Lukas Benjamin Inhestern

Tip leakage loss characterization and modeling plays an important role in small size radial turbine research. The momentum of the flow passing through the tip gap is highly related with the tip leakage losses. The ratio of fluid momentum driven by the pressure gradient between suction side and pressure side and the fluid momentum caused by the shroud friction has been widely used to analyze and to compare different sized tip clearances. However, the commonly used number for building this momentum ratio lacks some variables, as the blade tip geometry data and the viscosity of the used fluid. To allow the comparison between different sized turbocharger turbine tip gaps, work has been put into finding a consistent characterization of radial tip clearance flow. Therefore, a non-dimensional number has been derived from the Navier Stokes Equation. This number can be calculated like the original ratio over the chord length. Using the results of wide range CFD data, the novel tip leakage number has been compared with the traditional and widely used ratio. Furthermore, the novel tip leakage number can be separated into three different non-dimensional factors. First, a factor dependent on the radial dimensions of the tip gap has been found. Second, a factor defined by the viscosity, the blade loading, and the tip width has been identified. Finally, a factor that defines the coupling between both flow phenomena. These factors can further be used to filter the tip gap flow, obtained by CFD, with the influence of friction driven and pressure driven momentum flow.


Sign in / Sign up

Export Citation Format

Share Document