Accuracy of Existing Theoretical Models on the Assessment of the Design Shear Capacity of Slender RC Beams with Steel and GFRP Rods Without Transverse Reinforcement

2021 ◽  
pp. 907-917
Author(s):  
Monika Kaszubska ◽  
Renata Kotynia
Fibers ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 13 ◽  
Author(s):  
Constantin E. Chalioris ◽  
Adamantis G. Zapris ◽  
Chris G. Karayannis

The application of externally bonded fiber-reinforced polymer (EB-FRP) as shear transverse reinforcement applied in vulnerable reinforced concrete (RC) beams has been proved to be a promising strengthening technique. However, past studies revealed that the effectiveness of this method depends on how well the reinforcement is bonded to the concrete surface. Thus, although the application of EB-FRP wrapping around the perimeter of rectangular cross-sections leads to outstanding results, U-jacketing in shear-critical T-beams seems to undergo premature debonding failures resulting in significant reductions of the predictable strength. In this work, five shear-critical RC beams with T-shaped cross-section were constructed, strengthened and tested in four-point bending. Epoxy bonded carbon FRP (C-FRP) sheets were applied on the three sides and along the entire length of the shear-strengthened T-beams as external transverse reinforcement. Furthermore, the potential enhancement of the C-FRP sheets anchorage using bolted steel laminates has been examined. Test results indicated that although the C-FRP strengthened beams exhibited increased shear capacity, the brittle failure mode was not prevented due to the debonding of the FRP from the concrete surface. Nevertheless, the applied mechanical anchor of the C-FRP sheets delayed the debonding. Moreover, the design provisions of three different code standards (Greek Code of Interventions, Eurocode 8 and ACI Committee 440) concerning the shear capacity of T-shaped RC beams retrofitted with EB-FRP jackets or strips in U-jacketing configuration are investigated. The ability of these code standards to predict safe design estimations is checked against 165 test data from the current experimental project and data available in the literature.


2016 ◽  
Vol 106 (6) ◽  
pp. 708-715
Author(s):  
Chenwei HOU ◽  
Takuro NAKAMURA ◽  
Takayuki IWANAGA ◽  
Junichiro NIWA
Keyword(s):  

2013 ◽  
Vol 7 (1) ◽  
pp. 127-135 ◽  
Author(s):  
E. Grande ◽  
M. Imbimbo ◽  
A. Rasulo

The paper discusses the results of an experimental investigation carried out on reinforced concrete (RC) beams strengthened in shear by externally bonded fiber reinforced plastic (FRP) sheets. The study is devoted to analyze the role that the transverse steel reinforcement and the beam slenderness ratio could play on the resistant mechanism of RC beams strengthened in shear by FRP composites. The results are summarized and analyzed in detail in the paper in terms of shear capacity, cracking pattern and shear resisting contribution of FRP.


2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


2021 ◽  
Vol 19 (8) ◽  
pp. 897-912
Author(s):  
Kazuaki Higuchi ◽  
Keitai Iwama ◽  
Koichi Maekawa

2007 ◽  
Vol 29 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Jang-Ho Jay Kim ◽  
Yun Mook Lim ◽  
Jong-Pil Won ◽  
Hae-Geun Park ◽  
Kyong-Min Lee

Sign in / Sign up

Export Citation Format

Share Document