scholarly journals EFFECT OF TRANSVERSE REINFORCEMENT ON BOND SPLITTING BEHAVIORS OF RC BEAMS WITH SECOND LAYER-CUTOFF BARS

2015 ◽  
Vol 80 (714) ◽  
pp. 1297-1306 ◽  
Author(s):  
Yasuji SHINOHARA ◽  
Kazuhisa MURAKAMI
2016 ◽  
Vol 23 (4) ◽  
pp. 431-439 ◽  
Author(s):  
Robert KOWALSKI ◽  
Michał GŁOWACKI ◽  
Marian ABRAMOWICZ

When multi-span RC elements are exposed to fire one usually observes a yielding of span cross-sections while a safety reserve of support cross-sections is still significant. Due to this phenomenon a redistribution of bending moments occurs and the values of sagging moment in span cross-sections decrease while the values of hogging moment in support cross-sections increase. This paper shows the results of tests conducted on two-span RC beams in a situation when only one span has been exposed to high temperature from the bottom. The beams were 12×16 cm in their cross-section. The length of the span was 165 cm. The load has been applied by two forces put on each span. The beams were made of C25/30 concrete with siliceous aggregate. As a result of significant stiffness decrease of the heated span, redistribution of shear forces and bending moment occurs. Due to this redistribution the tested beams were prematurely damaged due to exhaust of the shear load bearing capacity in the middle part of the beam span where there was no transverse reinforcement.


2013 ◽  
Vol 19 (3) ◽  
pp. 400-408 ◽  
Author(s):  
Guray Arslan ◽  
Zekeriya Polat

Reinforced concrete (RC) beams with light transverse reinforcement are vulnerable to shear failure during seismic response. In order to prevent brittle shear failures at beam plastic hinge regions of earthquake-resistant structures, the Turkish Earthquake Code and ACI318 require the use of sufficient transverse reinforcement to resist the total expected shear demand. These codes tend to be excessively conservative and, in some cases, the contribution of the concrete to the shear strength is neglected. The aim of this study is to investigate the contribution of concrete to shear strength of RC beams failing in shear experimentally. The beams were tested under monotonically increasing reversed cyclic loading to determine the concrete contribution to shear strength. It is observed that the concrete contribution to the shear strength at ultimate state ranges from 18% to 69% of the ultimate strength.


2019 ◽  
pp. 342-349
Author(s):  
Pavlo Vegera ◽  
Roman Khmil ◽  
Rostyslav Vashkevych ◽  
Zinoviy Blickharskyy

2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Piero Colajanni ◽  
Salvatore Pagnotta ◽  
Antonino Recupero ◽  
Nino Spinella

2014 ◽  
Vol 41 (7) ◽  
pp. 594-604 ◽  
Author(s):  
Mehrollah Rakhshanimehr ◽  
M. Reza Esfahani ◽  
M. Reza Kianoush ◽  
B. Ali Mohammadzadeh ◽  
S. Roohollah Mousavi

In this paper, the flexural ductility of lap-spliced reinforced concrete (RC) beams is experimentally investigated. Twenty-four specimens were designed and manufactured for laboratory experiments. Concrete compressive strength, amount of transverse reinforcement over the splice length, and the diameter of longitudinal bars were selected as the main variables. The ductility of tested specimens is evaluated based on a previously defined ductility ratio. Results show that concrete strength and amount of transverse reinforcement over the splice have major effects on ductility. With an appropriate amount of transverse reinforcement, a satisfactory ductility response for different concrete strengths can be obtained. The CSA-A23.3-04 Standard provisions on bond strength and ductility of lap-spliced RC beams are evaluated and discussed. This study shows that the provisions in predicting the bond strength of lap-spliced concrete beams are adequate but may not achieve a satisfactory performance for ductility. An equation is proposed to achieve the appropriate ductility.


Fibers ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 13 ◽  
Author(s):  
Constantin E. Chalioris ◽  
Adamantis G. Zapris ◽  
Chris G. Karayannis

The application of externally bonded fiber-reinforced polymer (EB-FRP) as shear transverse reinforcement applied in vulnerable reinforced concrete (RC) beams has been proved to be a promising strengthening technique. However, past studies revealed that the effectiveness of this method depends on how well the reinforcement is bonded to the concrete surface. Thus, although the application of EB-FRP wrapping around the perimeter of rectangular cross-sections leads to outstanding results, U-jacketing in shear-critical T-beams seems to undergo premature debonding failures resulting in significant reductions of the predictable strength. In this work, five shear-critical RC beams with T-shaped cross-section were constructed, strengthened and tested in four-point bending. Epoxy bonded carbon FRP (C-FRP) sheets were applied on the three sides and along the entire length of the shear-strengthened T-beams as external transverse reinforcement. Furthermore, the potential enhancement of the C-FRP sheets anchorage using bolted steel laminates has been examined. Test results indicated that although the C-FRP strengthened beams exhibited increased shear capacity, the brittle failure mode was not prevented due to the debonding of the FRP from the concrete surface. Nevertheless, the applied mechanical anchor of the C-FRP sheets delayed the debonding. Moreover, the design provisions of three different code standards (Greek Code of Interventions, Eurocode 8 and ACI Committee 440) concerning the shear capacity of T-shaped RC beams retrofitted with EB-FRP jackets or strips in U-jacketing configuration are investigated. The ability of these code standards to predict safe design estimations is checked against 165 test data from the current experimental project and data available in the literature.


Sign in / Sign up

Export Citation Format

Share Document