scholarly journals Graphhopper: Multi-hop Scene Graph Reasoning for Visual Question Answering

2021 ◽  
pp. 111-127
Author(s):  
Rajat Koner ◽  
Hang Li ◽  
Marcel Hildebrandt ◽  
Deepan Das ◽  
Volker Tresp ◽  
...  

AbstractVisual Question Answering (VQA) is concerned with answering free-form questions about an image. Since it requires a deep semantic and linguistic understanding of the question and the ability to associate it with various objects that are present in the image, it is an ambitious task and requires multi-modal reasoning from both computer vision and natural language processing. We propose Graphhopper, a novel method that approaches the task by integrating knowledge graph reasoning, computer vision, and natural language processing techniques. Concretely, our method is based on performing context-driven, sequential reasoning based on the scene entities and their semantic and spatial relationships. As a first step, we derive a scene graph that describes the objects in the image, as well as their attributes and their mutual relationships. Subsequently, a reinforcement learning agent is trained to autonomously navigate in a multi-hop manner over the extracted scene graph to generate reasoning paths, which are the basis for deriving answers. We conduct an experimental study on the challenging dataset GQA, based on both manually curated and automatically generated scene graphs. Our results show that we keep up with human performance on manually curated scene graphs. Moreover, we find that Graphhopper outperforms another state-of-the-art scene graph reasoning model on both manually curated and automatically generated scene graphs by a significant margin.

Author(s):  
Haiyan Li ◽  
Dezhi Han

Visual Question Answering (VQA) is a multimodal research related to Computer Vision (CV) and Natural Language Processing (NLP). How to better obtain useful information from images and questions and give an accurate answer to the question is the core of the VQA task. This paper presents a VQA model based on multimodal encoders and decoders with gate attention (MEDGA). Each encoder and decoder block in the MEDGA applies not only self-attention and crossmodal attention but also gate attention, so that the new model can better focus on inter-modal and intra-modal interactions simultaneously within visual and language modality. Besides, MEDGA further filters out noise information irrelevant to the results via gate attention and finally outputs attention results that are closely related to visual features and language features, which makes the answer prediction result more accurate. Experimental evaluations on the VQA 2.0 dataset and the ablation experiments under different conditions prove the effectiveness of MEDGA. In addition, the MEDGA accuracy on the test-std dataset has reached 70.11%, which exceeds many existing methods.


Author(s):  
Santosh Kumar Mishra ◽  
Rijul Dhir ◽  
Sriparna Saha ◽  
Pushpak Bhattacharyya

Image captioning is the process of generating a textual description of an image that aims to describe the salient parts of the given image. It is an important problem, as it involves computer vision and natural language processing, where computer vision is used for understanding images, and natural language processing is used for language modeling. A lot of works have been done for image captioning for the English language. In this article, we have developed a model for image captioning in the Hindi language. Hindi is the official language of India, and it is the fourth most spoken language in the world, spoken in India and South Asia. To the best of our knowledge, this is the first attempt to generate image captions in the Hindi language. A dataset is manually created by translating well known MSCOCO dataset from English to Hindi. Finally, different types of attention-based architectures are developed for image captioning in the Hindi language. These attention mechanisms are new for the Hindi language, as those have never been used for the Hindi language. The obtained results of the proposed model are compared with several baselines in terms of BLEU scores, and the results show that our model performs better than others. Manual evaluation of the obtained captions in terms of adequacy and fluency also reveals the effectiveness of our proposed approach. Availability of resources : The codes of the article are available at https://github.com/santosh1821cs03/Image_Captioning_Hindi_Language ; The dataset will be made available: http://www.iitp.ac.in/∼ai-nlp-ml/resources.html .


Poetics ◽  
1990 ◽  
Vol 19 (1-2) ◽  
pp. 99-120
Author(s):  
Stefan Wermter ◽  
Wendy G. Lehnert

2020 ◽  
Vol 34 (05) ◽  
pp. 8504-8511
Author(s):  
Arindam Mitra ◽  
Ishan Shrivastava ◽  
Chitta Baral

Natural Language Inference (NLI) plays an important role in many natural language processing tasks such as question answering. However, existing NLI modules that are trained on existing NLI datasets have several drawbacks. For example, they do not capture the notion of entity and role well and often end up making mistakes such as “Peter signed a deal” can be inferred from “John signed a deal”. As part of this work, we have developed two datasets that help mitigate such issues and make the systems better at understanding the notion of “entities” and “roles”. After training the existing models on the new dataset we observe that the existing models do not perform well on one of the new benchmark. We then propose a modification to the “word-to-word” attention function which has been uniformly reused across several popular NLI architectures. The resulting models perform as well as their unmodified counterparts on the existing benchmarks and perform significantly well on the new benchmarks that emphasize “roles” and “entities”.


2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.


Sign in / Sign up

Export Citation Format

Share Document