A Hindi Image Caption Generation Framework Using Deep Learning

Author(s):  
Santosh Kumar Mishra ◽  
Rijul Dhir ◽  
Sriparna Saha ◽  
Pushpak Bhattacharyya

Image captioning is the process of generating a textual description of an image that aims to describe the salient parts of the given image. It is an important problem, as it involves computer vision and natural language processing, where computer vision is used for understanding images, and natural language processing is used for language modeling. A lot of works have been done for image captioning for the English language. In this article, we have developed a model for image captioning in the Hindi language. Hindi is the official language of India, and it is the fourth most spoken language in the world, spoken in India and South Asia. To the best of our knowledge, this is the first attempt to generate image captions in the Hindi language. A dataset is manually created by translating well known MSCOCO dataset from English to Hindi. Finally, different types of attention-based architectures are developed for image captioning in the Hindi language. These attention mechanisms are new for the Hindi language, as those have never been used for the Hindi language. The obtained results of the proposed model are compared with several baselines in terms of BLEU scores, and the results show that our model performs better than others. Manual evaluation of the obtained captions in terms of adequacy and fluency also reveals the effectiveness of our proposed approach. Availability of resources : The codes of the article are available at https://github.com/santosh1821cs03/Image_Captioning_Hindi_Language ; The dataset will be made available: http://www.iitp.ac.in/∼ai-nlp-ml/resources.html .

Author(s):  
Santosh Kumar Mishra ◽  
Gaurav Rai ◽  
Sriparna Saha ◽  
Pushpak Bhattacharyya

Image captioning refers to the process of generating a textual description that describes objects and activities present in a given image. It connects two fields of artificial intelligence, computer vision, and natural language processing. Computer vision and natural language processing deal with image understanding and language modeling, respectively. In the existing literature, most of the works have been carried out for image captioning in the English language. This article presents a novel method for image captioning in the Hindi language using encoder–decoder based deep learning architecture with efficient channel attention. The key contribution of this work is the deployment of an efficient channel attention mechanism with bahdanau attention and a gated recurrent unit for developing an image captioning model in the Hindi language. Color images usually consist of three channels, namely red, green, and blue. The channel attention mechanism focuses on an image’s important channel while performing the convolution, which is basically to assign higher importance to specific channels over others. The channel attention mechanism has been shown to have great potential for improving the efficiency of deep convolution neural networks (CNNs). The proposed encoder–decoder architecture utilizes the recently introduced ECA-NET CNN to integrate the channel attention mechanism. Hindi is the fourth most spoken language globally, widely spoken in India and South Asia; it is India’s official language. By translating the well-known MSCOCO dataset from English to Hindi, a dataset for image captioning in Hindi is manually created. The efficiency of the proposed method is compared with other baselines in terms of Bilingual Evaluation Understudy (BLEU) scores, and the results obtained illustrate that the method proposed outperforms other baselines. The proposed method has attained improvements of 0.59%, 2.51%, 4.38%, and 3.30% in terms of BLEU-1, BLEU-2, BLEU-3, and BLEU-4 scores, respectively, with respect to the state-of-the-art. Qualities of the generated captions are further assessed manually in terms of adequacy and fluency to illustrate the proposed method’s efficacy.


The software development procedure begins with identifying the requirement analysis. The process levels of the requirements start from analysing the requirements to sketch the design of the program, which is very critical work for programmers and software engineers. Moreover, many errors will happen during the requirement analysis cycle transferring to other stages, which leads to the high cost of the process more than the initial specified process. The reason behind this is because of the specifications of software requirements created in the natural language. To minimize these errors, we can transfer the software requirements to the computerized form by the UML diagram. To overcome this, a device has been designed, which plans can provide semi-automatized aid for designers to provide UML class version from software program specifications using natural Language Processing techniques. The proposed technique outlines the class diagram in a well-known configuration and additionally facts out the relationship between instructions. In this research, we propose to enhance the procedure of producing the UML diagrams by utilizing the Natural Language, which will help the software development to analyze the software requirements with fewer errors and efficient way. The proposed approach will use the parser analyze and Part of Speech (POS) tagger to analyze the user requirements entered by the user in the English language. Then, extract the verbs and phrases, etc. in the user text. The obtained results showed that the proposed method got better results in comparison with other methods published in the literature. The proposed method gave a better analysis of the given requirements and better diagrams presentation, which can help the software engineers. Key words: Part of Speech,UM


2020 ◽  
pp. 016555152096278
Author(s):  
Rouzbeh Ghasemi ◽  
Seyed Arad Ashrafi Asli ◽  
Saeedeh Momtazi

With the advent of deep neural models in natural language processing tasks, having a large amount of training data plays an essential role in achieving accurate models. Creating valid training data, however, is a challenging issue in many low-resource languages. This problem results in a significant difference between the accuracy of available natural language processing tools for low-resource languages compared with rich languages. To address this problem in the sentiment analysis task in the Persian language, we propose a cross-lingual deep learning framework to benefit from available training data of English. We deployed cross-lingual embedding to model sentiment analysis as a transfer learning model which transfers a model from a rich-resource language to low-resource ones. Our model is flexible to use any cross-lingual word embedding model and any deep architecture for text classification. Our experiments on English Amazon dataset and Persian Digikala dataset using two different embedding models and four different classification networks show the superiority of the proposed model compared with the state-of-the-art monolingual techniques. Based on our experiment, the performance of Persian sentiment analysis improves 22% in static embedding and 9% in dynamic embedding. Our proposed model is general and language-independent; that is, it can be used for any low-resource language, once a cross-lingual embedding is available for the source–target language pair. Moreover, by benefitting from word-aligned cross-lingual embedding, the only required data for a reliable cross-lingual embedding is a bilingual dictionary that is available between almost all languages and the English language, as a potential source language.


2017 ◽  
Vol 49 (4) ◽  
pp. 1-44 ◽  
Author(s):  
Peratham Wiriyathammabhum ◽  
Douglas Summers-Stay ◽  
Cornelia Fermüller ◽  
Yiannis Aloimonos

Author(s):  
Oksana Chulanova

The article discusses the capabilities of artificial intelligence technologies - technologies based on the use of artificial intelligence, including natural language processing, intellectual decision support, computer vision, speech recognition and synthesis, and promising methods of artificial intelligence. The results of the author's study and the analysis of artificial intelligence technologies and their capabilities for optimizing work with staff are presented. A study conducted by the author allowed us to develop an author's concept of integrating artificial intelligence technologies into work with personnel in the digital paradigm.


Author(s):  
Kiran Raj R

Today, everyone has a personal device to access the web. Every user tries to access the knowledge that they require through internet. Most of the knowledge is within the sort of a database. A user with limited knowledge of database will have difficulty in accessing the data in the database. Hence, there’s a requirement for a system that permits the users to access the knowledge within the database. The proposed method is to develop a system where the input be a natural language and receive an SQL query which is used to access the database and retrieve the information with ease. Tokenization, parts-of-speech tagging, lemmatization, parsing and mapping are the steps involved in the process. The project proposed would give a view of using of Natural Language Processing (NLP) and mapping the query in accordance with regular expression in English language to SQL.


Reading Comprehension (RC) plays an important role in Natural Language Processing (NLP) as it reads and understands text written in Natural Language. Reading Comprehension systems comprehend the given document and answer questions in the context of the given document. This paper proposes a Reading Comprehension System for Kannada documents. The RC system analyses text in the Kannada script and allows users to pose questions to It in Kannada. This system is aimed at masses whose primary language is Kannada - who would otherwise have difficulties in parsing through vast Kannada documents for the information they require. This paper discusses the proposed model built using Term Frequency - Inverse Document Frequency (TF-IDF) and its performance in extracting the answers from the context document. The proposed model captures the grammatical structure of Kannada to provide the most accurate answers to the user


Image captioning is a process to assign a meaningful title for a given image with the help of Natural Language Processing (NLP) and Computer Vision techniques. Captioning of an image first need to identify object, attribute and relationship among these in image and second is to generate relevant description for the given image. So it require both NLP and Computer vision techniques to perform image captioning task. Due to complexity of finding relationship between the attribute of the object and its feature makes it a challenging task. Also for machine it is difficult to emulate human brain however researches have shown a prominent achievement in this field and made it easy to solve such problems. The foremost aim of this survey paper is to describe several methods to achieve the same, the core involvement of this paper is to categorise different existing approaches for image captioning, further discussed their subcategories of this method and classify them, also discussed some of their strength and limitations. This survey paper gives theoretical analysis of image captioning methods and defines some earlier and newly approach for image captioning. This survey paper is basically a source of information for researchers in order to get idea of different approaches that were developed so far in the field of image captioning. Key words : Computer Vision, Deep Learning, Neural Network, NLP, Image Captioning, Multimodal Learning.


2021 ◽  
pp. 111-127
Author(s):  
Rajat Koner ◽  
Hang Li ◽  
Marcel Hildebrandt ◽  
Deepan Das ◽  
Volker Tresp ◽  
...  

AbstractVisual Question Answering (VQA) is concerned with answering free-form questions about an image. Since it requires a deep semantic and linguistic understanding of the question and the ability to associate it with various objects that are present in the image, it is an ambitious task and requires multi-modal reasoning from both computer vision and natural language processing. We propose Graphhopper, a novel method that approaches the task by integrating knowledge graph reasoning, computer vision, and natural language processing techniques. Concretely, our method is based on performing context-driven, sequential reasoning based on the scene entities and their semantic and spatial relationships. As a first step, we derive a scene graph that describes the objects in the image, as well as their attributes and their mutual relationships. Subsequently, a reinforcement learning agent is trained to autonomously navigate in a multi-hop manner over the extracted scene graph to generate reasoning paths, which are the basis for deriving answers. We conduct an experimental study on the challenging dataset GQA, based on both manually curated and automatically generated scene graphs. Our results show that we keep up with human performance on manually curated scene graphs. Moreover, we find that Graphhopper outperforms another state-of-the-art scene graph reasoning model on both manually curated and automatically generated scene graphs by a significant margin.


Sign in / Sign up

Export Citation Format

Share Document