Technological Evolution of Historic Mortars: From Lime-Based Mortars to Roman Opus Caementicium

2021 ◽  
pp. 90-96
Author(s):  
Dafni Kyropoulou ◽  
Eustratios Heliades ◽  
Petros Karalis ◽  
George Diamantopoulos ◽  
Sophia Gougoura ◽  
...  

Undoubtedly is a technological revolution that has certainly focused on the interest of software development companies, companies of IT, hardware design, networks and artificial intelligence. A technological revolution that started a few years ago and has evolved rapidly, thanks to the technological evolution of IT and networks. It is a combination of many communication protocols, sensors and other intelligent technologies, the correlation between smart technologies, networks and services that all together complete processes in order to achieve the result for which they were installed. In advanced technology countries, both simple users and industry use IoT where sensors are simplified and automated at home and in industry, there is continuous monitoring, control and prediction of product failure for the benefit of efficient production of high quality products and control production at each stage of product processing / production. Someone could well think and say that all this is fantastic and that we have solved the problem of organization, easy life without further thoughts and worries since everything is done automatically.An IoT in an intelligent house could literally regulate everything, using sensors and appropriate software could talk with a human person, as well as someone could appropriately entice all that security and literally take full control of the premises of a home with consequences from minimal to catastrophic including the complete destruction of a home.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2084
Author(s):  
Kostas Nizamis ◽  
Alkinoos Athanasiou ◽  
Sofia Almpani ◽  
Christos Dimitrousis ◽  
Alexander Astaras

Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human–machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals—namely, family members and professional carers—to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.


2021 ◽  
Vol 48 ◽  
pp. 45-53
Author(s):  
Agnieszka Defus ◽  
Elena Possenti ◽  
Antonio Sansonetti ◽  
Cristina Tedeschi ◽  
Chiara Colombo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document