A Preliminary Study on the Effect of Strut Waviness on the Mechanical Properties of BCC Lattice Unit Cells

2021 ◽  
pp. 431-441
Author(s):  
Davide Tumino ◽  
Andrea Alaimo ◽  
Calogero Orlando ◽  
Stefano Valvano
2019 ◽  
Vol 16 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Paiman Bawon ◽  
Seng Hua Lee ◽  
Nurul Fatiha Osman ◽  
Muhamad Suriadi Mohd Atkhar ◽  
Zaidon Ashaari

Author(s):  
Abdelrahman Mahmoud ◽  
Mohammed Naser ◽  
Mahmoud Abdelrasool ◽  
Khalid Jama ◽  
Mohamed Hussein ◽  
...  

Humans are vulnerable and easily prone to all kind of injuries, diseases, and traumas that can be damaging to their tissues (including its building unit, cells), bones, or even organs. Therefore, they would need assistance in healing or re-growing once again. Medical scaffolds have emerged over the past decades as one of the most important concepts in the tissue-engineering field as they enable and aide the re-growth of tissues and their successors. An optimal medical scaffold should be addressing the following factors: biocompatibility, biodegradability, mechanical properties, scaffold architecture/porosity, precise three-dimensional shape and manufacturing technology. There are several materials utilized in the fabrication of medical scaffolds, but one of the most extensively studied polymers is polylactic acid (PLA). PLA is biodegradable thermoplastic aliphatic polyester that is derived from naturally produced lactic acid. PLA is characterized with its excellent mechanical properties, biodegradability, promising eco-friendly, and excellent biocompatibility. PLA can be fabricated into nanofibers for medical scaffolds used through many techniques; electrospinning is one of the widely used methods for such fabrication. Electrospinning is a favorable technique because in the preparation of scaffolds, some parameters such as fiber dimensions, morphology, and porosity are easily controlled. A problem that is associated with medical scaffolds, such as inflammation and infection, was reported in many cases resulting in a degradation of tissues. Therefore, a surface modification was thought of as a needed solution which mostly focuses on an incorporation of extra functionalities responsible for the surface free energy increase (wettability). Therefore, plasma technique was a favorable solution for the surface treatment and modification. Plasma treatment enables the formation of free radicals. These radicals can be easily utilized for grafting process. Subsequently, ascorbic acid (ASA) could be incorporated as anti-inflammatory and anti-infection agent on the plasma pretreated surface of scaffolds.


2017 ◽  
Vol 112 ◽  
pp. 04005 ◽  
Author(s):  
Daniela-Monica Iordache ◽  
Cătălin-Marian Ducu ◽  
Eduard-Laurentiu Niţu ◽  
Doina Iacomi ◽  
Adriana-Gabriela Plăiaşu

Author(s):  
S.M. Ahmadi ◽  
G. Campoli ◽  
S. Amin Yavari ◽  
B. Sajadi ◽  
R. Wauthle ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 635 ◽  
Author(s):  
Christa de Jonge ◽  
Helena Kolken ◽  
Amir Zadpoor

The concept of “mechanical metamaterials” has become increasingly popular, since their macro-scale characteristics can be designed to exhibit unusual combinations of mechanical properties on the micro-scale. The advances in additive manufacturing (AM, three-dimensional printing) techniques have boosted the fabrication of these mechanical metamaterials by facilitating a precise control over their micro-architecture. Although mechanical metamaterials with negative Poisson’s ratios (i.e., auxetic metamaterials) have received much attention before and have been reviewed multiple times, no comparable review exists for architected materials with positive Poisson’s ratios. Therefore, this review will focus on the topology-property relationships of non-auxetic mechanical metamaterials in general and five topological designs in particular. These include the designs based on the diamond, cube, truncated cube, rhombic dodecahedron, and the truncated cuboctahedron unit cells. We reviewed the mechanical properties and fatigue behavior of these architected materials, while considering the effects of other factors such as those of the AM process. In addition, we systematically analyzed the experimental, computational, and analytical data and solutions available in the literature for the titanium alloy Ti-6Al-4V. Compression dominated lattices, such as the (truncated) cube, showed the highest mechanical properties. All of the proposed unit cells showed a normalized fatigue strength below that of solid titanium (i.e., 40% of the yield stress), in the range of 12–36% of their yield stress. The unit cells discussed in this review could potentially be applied in bone-mimicking porous structures.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4845
Author(s):  
Anna Al Sabouni-Zawadzka

The study focuses on the identification of extreme mechanical properties of 3D lattice metamaterials based on regular tensegrity modules: 4-strut simplex, 3-strut simplex, expanded octahedron, truncated tetrahedron and X-module. The basis of the analysis is a continuum model which is used to find the equivalent elasticity matrices of the unit cells. For each examined tensegrity module a line of extreme properties is determined, which indicates the occurrence of the soft mode of deformation. Moreover, the eigenvectors corresponding to soft and stiff deformation modes are calculated and presented graphically. The obtained results are promising from the point of view of future creation of tensegrity lattices and metamaterials with extreme mechanical properties. One of the analysed materials is identified as quasi bimode, two as quasi trimodes, another one as a trimode and one more as a unimode.


Sign in / Sign up

Export Citation Format

Share Document