Weak Password Scanning System for Penetration Testing

Author(s):  
Bailin Xie ◽  
Qi Li ◽  
Hao Qian
Author(s):  
C.J. Stuart ◽  
B.E. Viani ◽  
J. Walker ◽  
T.H. Levesque

Many techniques of imaging used to characterize petroleum reservoir rocks are applied to dehydrated specimens. In order to directly study behavior of fines in reservoir rock at conditions similar to those found in-situ these materials need to be characterized in a fluid saturated state.Standard light microscopy can be used on wet specimens but depth of field and focus cannot be obtained; by using the Tandem Scanning Confocal Microscope (TSM) images can be produced from thin focused layers with high contrast and resolution. Optical sectioning and extended focus images are then produced with the microscope. The TSM uses reflected light, bulk specimens, and wet samples as opposed to thin section analysis used in standard light microscopy. The TSM also has additional advantages: the high scan speed, the ability to use a variety of light sources to produce real color images, and the simple, small size scanning system. The TSM has frame rates in excess of normal TV rates with many more lines of resolution. This is accomplished by incorporating a method of parallel image scanning and detection. The parallel scanning in the TSM is accomplished by means of multiple apertures in a disk which is positioned in the intermediate image plane of the objective lens. Thousands of apertures are distributed in an annulus, so that as the disk is spun, the specimen is illuminated simultaneously by a large number of scanning beams with uniform illumination. The high frame speeds greatly simplify the task of image recording since any of the normally used devices such as photographic cameras, normal or low light TV cameras, VCR or optical disks can be used without modification. Any frame store device compatible with a standard TV camera may be used to digitize TSM images.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


Author(s):  
Palak Aar ◽  
Aman Kumar Sharma

Penetration testing is defined as the procedure of imposing as an attacker to find out the vulnerabilities in a system that can be used to gain access to system for malicious use. This paper provides an overview of penetration testing and list out the criteria used to select the best tools for the given purpose. It also provides a brief description of the selected tools and furthermore we compare those tools. The results of the comparison are shown in terms of graphs and tables.


2018 ◽  
Vol 50 (3) ◽  
pp. 310-322 ◽  
Author(s):  
Xiping Wang ◽  
Ed Thomas ◽  
Feng Xu ◽  
Yunfei Liu ◽  
Brian K Brashaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document